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Abstract. An important part of any Neural Architecture Search (NAS)
system is a good performance estimation strategy. This strategy should
ideally have a high accuracy, a low initialization time and a low query
time. This paper evaluates the Synthetic Petri Dish method of neural
network performance estimation in an image classification context. The
method is tested on the CIFAR-10 dataset using the data from the NAS-
Bench-101 dataset as ground truth. We examine different ways of con-
structing motifs and analyze the influence of these motif choices on the
final performance. While the motif networks are capable of converging
on the synthetic dataset, the outer loop losses show little improvement
throughout the training process.

Keywords: Neural Architecture Search · Performance Estimation · Au-
toML

1 Introduction

In recent years Deep Learning (DL) has proven its ability to effectively solve a
wide variety of problems[14][18]. Much of this improvement has been fostered
by the availability of increasing amounts of computational power and data, but
also the way in which these DL systems are designed. Deep Learning algorithms
have the ability to automatically learn and distinguish patterns relevant for the
problem at hand. Although these algorithms can learn to recognize patterns
automatically, obtaining satisfactory results often still requires a significant en-
gineering effort (i.e., when designing neural network architectures). This presents
a significant obstacle to the use of DL in various fields.

1.1 Neural Architecture Search

In order to overcome this obstacle, the design process of DL systems can be
partially automated using Neural Architecture Search (NAS) techniques. NAS
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systems will automatically try to find the best Neural Network (NN) architecture
with minimal human involvement using various techniques such as Evolutionary
Algorithms (EA) [5] and Reinforcement Learning (RL) [18].

Following the work of Elsken et al. [6], a NAS system can be divided into three
main components: the search space, the search strategy and the performance
estimation. The search space is used to define which NNs can be evaluated by
the NAS system. A poor choice of search space can lead to suboptimal results
from the NAS algorithm, for example, by excluding certain operations that could
result in significantly better performance. The performance estimation strategy
is used to determine the performance of a given NN on a given task, without
having to train the NN to convergence. Finally, the search strategy will determine
how the search space is explored.

This paper will focus on performance estimation using the synthetic petri
dish method originally described by Rawal et al. [13]. We will evaluate this
methodology’s performance in the image classification domain.

We attempt to answer the following research questions in this paper:

1. Is the use of the Synthetic Petri Dish method in this domain feasible?
2. What is the influence of the choice of motif on the generated synthetic

dataset?

This paper is organized as follows: We start by discussing related work in
the field of NAS performance estimation (Section 2), followed by a detailed
description of our modifications to the synthetic petri dish method (Section 3).
Next, we explain the experimental set-up we used (Section 4) and we analyze
the results from our experiments (Section 5). Finally, we draw some conclusions
based on the results of our experiments (Section 6), and outline possible future
research tracks (Section 7).

2 Related Work

NAS systems have shown that they can find architectures that outperform man-
made architectures in various problem domains [5], [18]. These NAS systems
commonly use EA [5] or RL [18], to explore their architecture search space.
In early work [18], training a NN to convergence was used as a performance
estimator. This has the advantage of being a near-perfect performance estimator
(although variations in performance can still occur from hyperparameter tuning
and different random initializations), but the required computational resources
present a severe disadvantage. Because of this, a range of more efficient methods
to predict task performance of NN architectures have been explored.

2.1 Low Fidelity Training

One performance estimation strategy is to lower the fidelity of training by: low-
ering the amount of training epochs [3] or the amount of training time [14], [1].
This was demonstrated by Domhan et al. [3] in their paper, where they sped
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up the hyperparameter tuning process for NNs by terminating the training of
NNs early when it became clear that they weren’t going to improve on the best
configuration seen so far.

2.2 Learning Curve Extrapolation and Scheduling

Furthermore, we can increase the accuracy and efficiency of the performance
estimation by extrapolating the performance during training [3], and stopping
the training process on architectures whose extrapolation predicts poor final
performance [9]. The main challenge with this method is performing accurate
extrapolations with limited data from a limited number of training epochs [7].
Domhan et al. demonstrated this by using a linear combination of curves to
extrapolate the learning curve of a NN, allowing them to determine which ex-
periments were worthwhile to continue, and which experiments could be stopped
early.

2.3 Weight Sharing

Another interesting method of performance estimation is by using weight shar-
ing [12], sometimes also referred to as supernetwork training [10]. This involves
initializing a supernetwork, which is a superposition of all networks in the search
space. This supernetwork is then trained, by sampling a subnetwork, and using
gradient descent to train this subnetwork. This procedure of sampling a sub-
network and training is repeated multiple times, until the entire supernetwork
has been trained sufficiently. During performance estimation, a subnetwork is
sampled, and can be evaluated on the target task with minimal or no additional
training. While weight sharing is an efficient method, it is not without issues,
with continuous relaxation systems suffering from architecture collapse [16], and
low ranking correlation being observed between the ground truth and weight
sharing settings [15].

2.4 Synthetic Petri Dish

In 2020, Rawal et al. [13] introduced their synthetic petri dish method. This
method involves the generation of synthetic data in such a way that smaller
versions of a NN have a similar performance ranking compared to their full size
counterparts. Since this method is the focus of this paper, we will elaborate on
it further.

In the original paper, Rawal et al. considered two problems, MNIST [2] and
Penn Treebank (PTB) [11]. In the MNIST setting, they used a fully connected
2-layer NN, with 100 neurons in each layer. They generated a smaller version
of this network, called a motif, by reducing the number of neurons in the fully
connected layers down to 10. A similar methodology was used to reduce the size
of a Recurrent Neural Network (RNN) used for natural language generation on
the PTB dataset, where the ground truth setting had a layer size of 850, while
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the motif setting had a layer size of 3, reducing a NN with 27M parameters to
a NN with 140 parameters.

After generating a set of N motifs, a synthetic dataset needs to be generated.
This dataset is initialized randomly, and has features similar to the original
dataset, although it is usually significantly smaller. In their paper, Rawal et al.
accomplished this for the MNIST dataset by randomly initializing 40 samples
with 10 features each, compared to MNIST’s original 60k samples with 784
(28x28) features each. For the PTB dataset, they generated 20 samples of length
10, with 10 features each, compared to the PTB datasets 923k (training) + 73k
(validation). This reduction in data fidelity is important to allow the smaller
motifs to sufficiently converge on an otherwise much too complicated problem.

Next, all motifs are trained on the synthetic data. After the training pro-
cedure, the motifs are compared to their ground truth counterparts based on
the loss they achieved during training. The Mean Squared Error (MSE) between
the motifs and ground truth NNs is calculated, and used to update the syn-
thetic dataset. This cycle of training motifs and updating the synthetic data is
repeated for a fixed number of iterations. After this point, a new, unseen mo-
tif can be trained on the synthetic dataset, and its loss after training on the
synthetic dataset should reflect the loss in the ground truth setting. Since the
motif is much smaller than its full-size equivalent, it allows for much quicker
performance estimation than training its full size equivalent.

3 Methodology

In this section, we will explain the methodology used in this paper, noting where
it differs from the methodology described in Rawal et al.’s paper [13].

3.1 Performance Evaluation

In order to evaluate the performance of Convolutional Neural Networks (CNNs)
in the ground truth setting, we will make use of the NAS-Bench-101 dataset [17].
This dataset contains data of around 423k CNNs, including their image classi-
fication accuracy, training times and the total number of parameters present in
each. Originally, the normalized MSE loss between the loss in the motif setting
and the ground truth setting was used to optimize the synthetic data. Unfortu-
nately, the NAS-Bench-101 dataset does not contain any data on the loss values
of the trained architectures. To circumvent this, we will use the accuracy values
included in the dataset, more specifically, the accuracy on the validation dataset
after training for 108 epochs. The NAS-Bench-101 dataset contains the accuracy
on training, test and validation set after 4, 12, 36 and 108 epochs, with no data
on the gaps between these epochs. Based on this, we selected the 108-epoch set-
ting, since architectures trained in this setting usually have not fully converged
after 36 epochs.
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3.2 Motifs

Since we operate in a cell-based NAS context, generating motifs can be done
by varying the number of cells. For the generation of the motifs, we use the
framework layed down in the NAS-Bench-101 dataset, where neural networks
consists of 3 stacks, each with 3 cells. Stacks are separated by downsampling
layers, the first stack is preceded by a stem and the last stack is followed by
a global average pooling and a dense layer. For an overview of this structure,
we refer to the top-left part of Figure 1 in [17]. In NAS-Bench-101, each cell is
constructed using a directed acyclic graph that represents that cell architecture.
In order to determine the channel counts for each operation in the cell, a simple
rule set is used. The number of channels in the input and output node of the
graph always remains the same. Each stack has double the number of channels of
the previous stack, resulting in 128, 256 and 512 channels in the first, second and
third stack respectively. Feature maps along edges that go into the output node
are concatenated, while feature maps along edges going into any other node are
added. This implies that the output channels will be evenly distributed among
all edges incident to the output node. 1x1 convolutions are inserted as necessary,
to match channel counts.

STACK 0

DENSE

GLOBAL AVERAGE POOL

CELL 2

CELL 1

CELL 0

STEM

(a) Motif A

DENSE

GLOBAL AVERAGE POOL

STACK 2
CELL 2
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CELL 1

DOWNSAMPLE

STACK 0
CELL 0

STEM

(b) Motif B

STACK 0
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CELL 0

STEM

(c) Motif C

Fig. 1: The different motifs.

While there are many possiblities, we will evaluate three different types of
motifs, shown in figure 1. Figure 1a shows Motif A, where the number of cells in
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each stack has been kept at 3, but the total number of stacks has been reduced to
1. Since there is only 1 stack, the downsampling layers have also been removed.
Motif B is shown in Figure 1b, where the number of cells in each stack has been
reduced to 1, but 3 stacks were kept. This results in the same number of cells, but
a higher amount of trainable parameters. Each downsampling layer in this motif
halves the spatial dimensions of the feature maps, but doubles the number of
channels, which causes the higher total number of trainable parameters. Finally,
Motif C is shown in Figure 1c. Both the number of stacks, and the number of
cells in each stack have been reduced to 1. Motif A uses its stem to convolve the
initial 3 channels to 32 channels, while motifs B and C’s stem convolves to 16
channels.

3.3 Synthetic Data

The synthetic data is initialized by randomly generating 200 images with a
resolution of 16x16 pixels and 3 channels. Each image is assigned one of 10
classes, making sure to retain the same class balance as found in the CIFAR-10
dataset [8]. This is in contrast to the CIFAR-10 dataset that was used to generate
the NAS-Bench-101 dataset, which contained 50k training images, each with a
resolution of 32x32 pixels and 3 color channels, also assigned to 1 of 10 classes
each.

3.4 Motif Training Procedure

The synthetic petri dish algorithm consists of two nested loops: an inner loop
and an outer loop. The inner loop is used to train each motif network on the
synthetic data, while the outer loop uses the trained motif networks to update
the synthetic dataset.

3.5 Synthetic Data Update Procedure

Updating the synthetic dataset is done through gradient descent. After training
the motifs in the inner loop, they are passed to the outer loop for evaluation,
during which gradients of the motif outputs with respect to the synthetic data
are tracked and later used to update the synthetic data. In order to generate an
effective synthetic dataset, we need to find a metric that can be calculated from
the outputs of the motifs in a differentiable way, and which can later be used to
compute a loss function when comparing this motif metric to the data present in
the NAS-Bench-101 dataset. The NAS-Bench-101 dataset contains a number of
metrics that might be used for this, but unfortunately, it does not contain any
loss values. The dataset does contain accuracy values however, which we will use
to compute an outer-loop loss. First, we must derive a differentiable metric that
we will compare with the accuracy in the NAS-Bench-101 dataset.

We start by computing the output of the motifs, ŷ:

ŷ = fθ (x) (1)
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In equation 1 ŷ are the raw logits from the motif network, fθ. Next, we
compute a probability distribution p̂ over the outputs, by applying the softmax
function to the logits:

p̂ = softmax (ŷ) (2)

Next, we determine which element in the ground-truth vector y has the
highest value, and store its index in i. We note that, while the argmax operation
itself is not differentiable, we can still use its output to index into ŷ or p̂ without
jeopardizing the differentiability of the result:

i = argmax (y) (3)

Finally, we will use the element from p̂ at index i as the performance metric:

ẑ = p̂ [i] (4)

Intuitively, this metric should increase as classifier performance improves,
since it represents the predicted probability of the true class by the motif. We
can also prove this, by computing the derivative of the inner loop loss func-
tion of the motifs with respect to this metric. We expect this derivative to be
negative, indicating that, as the metric improves, the inner loop loss function
should decrease. The motifs were trained using cross-entropy loss between the
ground-truth labels as a one-hot vector with K elements, q, and the probabilities
returned from the motifs, p̂:

dL
dẑ

=
d

dẑ
−

K∑
j=1

q [j] · log (p̂ [j]) (5)

Since q is a one-hot vector, only 1 element (the element at index i) will
actually contribute to this sum, we thus reduce the sum to this element:

dL
dẑ

=
d

dẑ
− log (p̂ [i]) =

d

dẑ
− log (ẑ) (6)

From this, we can compute the final derivative for L with respect to ẑ:

dL
dẑ

= −1

ẑ
(7)

We note that ẑ is a probability, thus, in equation 7 the derivative is always
negative, showing that an increase in ẑ correlates with a reduction of the inner
loop loss.

Using the metric from equation 7, we now need to formulate a loss function
that compares the motif metric to the accuracy on the validation dataset after
108 epochs of training that is included in the NAS-Bench-101 dataset. Since
we are comparing two different metrics, we will allow for a linear relationship
to exist between both, by optimizing the Pearson correlation coefficient between
them, rather than optimizing the difference between them directly. We formulate
this as follows:
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L (z, ẑ) = 1− |rzẑ| (8)

In equation 8, rzẑ represents the Pearson correlation between two datasets:
z and ẑ. We take the absolute value of the Pearson correlation, since, for our
purposes, a perfect negative correlation is equally valuable as a perfect positive
correlation. Since we are solving a minimization problem, the loss function will
be formulated as 1 − |rzẑ|, rather than |rzẑ|, which represents a maximization
problem.

4 Experiments

Every outer loop iteration considers a batch of 6 motifs. The synthetic data
was updated using the ADAM optimizer with a learning rate of 1 × 10−2 and
no weight decay. When training the motifs in the inner loop, we also used the
ADAM optimizer with a learning rate of 5×10−5, and a batch size of 20, applying
weight decay regularization with a factor of 1×10−6. The inner loop uses a cross-
entropy loss function. Every motif was trained for 100 epochs during the inner
loop, and we carried out a total of 170 outer loop epochs. In order to speed up
the inner loop, all motifs are trained in parallel.
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Fig. 2: The mean of the maximum accuracy achieved by the six motifs in each
outer loop epoch. The filled area corresponds to the mean +/- 1 standard de-
viation. Data was run through a moving average filter with filter size 3 before
plotting.
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5 Results

We initially generated one synthetic data set for each motif shown in figure 1.
Based on these results, we decided to carry out a second set of experiments,
which involved training motifs A and B with a shorter inner loop training cycle.

In a NAS setting, the goal is to find the best performing NN architecture. In
other words, it is important that we are able to determine an accurate ranking
of NN architectures, rather than being able to accurately predict the exact per-
formance of each NN. Based on this observation, we will use the Kendall-Tau
ranking correlation coefficient to evaluate the synthetic dataset.

5.1 Motif Performance
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Fig. 3: The inner loop training curve at the beginning (Outer loop epoch 0, left),
middle (Outer loop epoch 85, middle) and end (Outer loop epoch 169, right)
of the synthetic petri dish algorithm. The line shows the mean of the 6 motifs
considered in that outer loop epoch, with the shaded area representing the mean
+/- 1 standard deviation.

From figure 2 we can see that motif A and B have no trouble consistently
becoming perfect classifiers for the synthethic data, with respective mean accu-
racies over the last 5 epochs of 97.81% and 99.43%. Since these two motifs have
the most trainable parameters, it is likely that they overfit the synthetic dataset.
Motif C seems to exhibit a small increase in mean maximum accuracy as the
synthetic dataset generation progresses, starting at 48.5% accuracy (Mean of the
first 5 epochs), and ending at 64.5% (Mean of the last 5 epochs). This is also
reflected in figure 3, showing the training curves during different inner loops.
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An important observation here is the fact that motifs A and B are almost
always perfect classifiers, making it very difficult for them to approximate the
accuracy ranking in the NAS-Bench-101 dataset. In fact, when using motif A, we
noticed that in 14.71% of all epochs, all 6 motif used in the outer loop became
perfect classifiers. For motif B this number is even higher at 43.53%, while this
never occurred with motif C.

We can also see that motif B outperforms motif A relatively consistently,
by having higher mean accuracy and a lower standard deviation. We suspect
this happens because for the same architecture, motif B has a higher number of
trainable parameters in around 80% of cases. The fact that motif A still has a
higher parameter count in 20% of cases can be attributed to the rules used in
NAS-Bench-101 to allocate channels, and the use of projection convolutions to
ensure the channel counts of the different convolutions in a cell match.

5.2 Synthetic Dataset Generation

Next, we will analyze the process of generating a synthetic dataset.
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Fig. 4: The Kendall-Tau Ranking Correlation computed on the 6 motifs used in
the outer loop update. Data was run through a moving average filter with filter
size 3 before plotting.

From figure 4 we can clearly see that the outer loop training process was
unable to produce any meaningful improvement on the synthetic data. We note
that in figure 4, it was not always possible to compute a ranking correlation.
When all motifs attained 100% accuracy, it is impossible to determine the rank-
ing, and no meaningful Kendall-Tau value can be computed. We assigned these
points the worst possible correlation score of 0. As mentioned before, this hap-
pened 14.71% of the time with motif A, 43.53% with motif B and never for motif
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C. The overall mean of the Kendall-Tau correlation for motif A, B and C was
0.092, 0.152 and −0.002 respectively when including the 0 values, or 0.108, 0.270
and −0.002 when excluding them. Interestingly, while there were clear differences
between motifs in the inner loop, these differences are much less pronounced in
the outer loop, with motif B performing best and motif C performing worst.
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Fig. 5: The mean of the maximum accuracy achieved by the six motifs in each
outer loop epoch with only 16 training epochs in the inner loop. Motif C was
trained with 100 epochs in the inner loop. Data was run through a moving
average filter with filter size 3 before plotting.

5.3 Shortened Training

In section 5.1 we saw that motifs A and B were able to overfit the synthetic data
quite easily, which would make any attempt at further synthetic data generation
difficult, since there is no performance difference between perfect classifiers. In
this section we will analyze whether stopping the inner loop training early could
mitigate some of the these issues, and how this influences the performance of
the outer loop.

From figure 5 we can see that lowering the number of training epochs on
motif A and B seems to have brought them more in line with motif C. We see
that, even in a reduced training setting, motif B still outperforms motif A by
around 20%, with motif B attaining a mean accuracy over the final 5 epochs of
85.13%, compared to motif A’s 59.27%. Similar to our earlier observations, we
notice that in the reduced training setting, there is still little to no evolution in
the motif’s accuracy as the synthetic data is updated. The training curves in
figure 6 tell a similar story. Interestingly, from figure 6 we can see that motif
B is quite quick to converge, and seems much closer to convergence than motif
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Fig. 6: The inner loop training curve at the beginning (Outer loop epoch 0, left),
middle (Outer loop epoch 85, middle) and end (Outer loop epoch 169, right) of
the synthetic petri dish algorithm. Motifs A and B were trained for 16 epochs,
the training curve for motif C was simply truncated at 16 epochs to provide a
comparison. The line shows the mean of the 6 motifs considered in that outer loop
epoch, with the shaded area representing the mean +/- 1 standard deviation.

A and C, despite its higher parameter count. This is likely the result of the
presence of pooling layers, which may improve the networks robustness to noisy
characteristics of the synthetic dataset.

While the inner loop accuracy shows different results from before, the outer
loop was still unable to produce any meaningful ranking correlation, as can be
seen in figure 7. The shorter training procedure has eliminated instances where
all motifs are perfect classifiers, for each of the three motifs. As expected, training
motif B for a shorter amount of time reduces its Kendall-Tau correlation, down
to 0.209, with motif A also doing worse at 0.043.

5.4 Computational Efficiency

The main goal of a performance estimation technique in NAS is to estimate the
performance of a NN faster than training the NN in the ground truth setting. In
their comparison of different performance estimation strategies, White et al. [15]
define the computational cost of using a performance estimator as consisting of
two separate components: initialization time and query time. In this section, we
will use these criteria to evaluate the synthetic petri dish performance estimation
method.

We start by examining the initialization time in table 1. Interestingly, we
notice that motif A is slower than motif B, even though in around 80% of cases,
it has fewer trainable parameters. Since motif B also outperforms motif A in
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Fig. 7: The Kendall-Tau Ranking Correlation computed on the 6 motifs used in
the outer loop update, with only 16 training epochs in the inner loop. Motif C
was trained with 100 epochs in the inner loop. Data was run through a moving
average filter with filter size 3 before plotting to show trends more clearly.

Setting Minimum Mean (± Std.) Maximum
A 0.193s 4.282s± 2.078s 10.361s
B 0.174s 3.471s± 1.701s 10.397s
C 0.075s 1.427s± 0.628s 3.259s

NAS-Bench-101 2.632s 17.893s± 8.508s 51.511s

Table 1: The time necessary to complete 1 inner loop epoch of training.

terms of ranking correlation, we can see that motif A is a suboptimal choice of
motif, while motifs B and C provide trade-offs in terms of ranking correlation
and initialization time. We note that the training time for NAS-Bench-101 was
taken from the dataset, which used TPU v2 accelerators. The data for motifs
was gathered on AMD Ryzen 9 5900X CPU. We trained the motifs using CPUs,
rather than GPUs since the motifs and synthetic dataset are so small, the benefits
from executing them on GPUs tend to be outweighed by the time it takes to
transfer data between CPU and GPU.

Table 2 shows the initialization time calculation for each motif, and com-
pares our approach to that of Rawal et al.[13] As expected, due to the use of
a new set of motifs in each outer loop epoch, our method has a larger com-
putational requirement for acquiring the necessary ground truth data than the
original method. Unfortunately, we were unable to measure the impact this had
in preventing the overfitting of the synthetic dataset to a small subset of motifs,
due to the non-convergence of our outer loop.

Next we turn our attention to query time. Since querying the synthetic petri
dish is equivalent to training one motif on the synthetic dataset to convergence,
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Setting Subitem Rawal et al.[13] This work
NAS-Bench-101 Training Ground

Truth Networks
30× 108× 17.893s =

57.973s× 103 ≈
0.67 days

6× 170× 108×
17.893s =

1.971×106s ≈ 23 days

Motif A Generating Synthetic
Petri Dish

30× 170× 100×
4.282s =

2.184×106s ≈ 25 days

6×170×100×4.282s =
436.764× 103s ≈

5 days
Total 26 days 28 days

Motif B Generating Synthetic
Petri Dish

30× 170× 100×
3.471s =

1.770×106s ≈ 20 days

6×170×100×3.471s =
354.042× 103s ≈

4 days
Total 21 days 27 days

Motif C Generating Synthetic
Petri Dish

30× 170× 100×
1.427s =

727.770×103 ≈ 8 days

6×170×100×1.427s =
145.554× 103s ≈

2 days
Total 9 days 24 days

Table 2: The total initialization time of the synthetic petri dish method

assuming 100 epochs of training on the synthetic dataset, we find a query time
of 428.2s for motif A, 347.1s for motif B, and 142.7s for motif C.

When comparing our results to those in [15], we see that, for the NAS-Bench-
101 benchmark, in the high initialization (106s), medium query time region
(102s), BANANAS is the optimal predictor. From figure 4 (right), we see that in
the NAS-Bench-101 setting, given 106s of initialization time, no method achieves
less than 0.2 Kendall-Tau ranking correlation, while the best methods achieve
0.8 Kendall-Tau ranking correlation.

6 Discussion and Conclusions

In this publication, we analyzed the use of the synthetic petri dish method in
the image classification domain. We note that, even though the motif networks
have no problem converging (and overfitting) on the synthetic dataset, this does
not guarantee that the outer loop optimization process will work. Interestingly,
this can lead to a chicken-and-egg problem between the synthetic data (which
does not result in an accurate distribution of motif networks) and motif networks
(which have been trained on a non-representative dataset). This likely hampers
the stability of the synthetic petri dish method.

We selected a new sample of 6 architectures to be used in each outer loop.
This leads to a total of 1020 architectures which all require a ground truth evalu-
ation in order to generate the synthetic data. Our analysis of the computational
requirements in section 5.4 shows that this is a major downside of our method-
ology, and underlines the significance of an improvement in ranking correlation
before such trade-offs are worthwhile. It also highlights the importance of as-
sessing the generalization power of the synthetic petri dish estimator, something
we were unfortunately unable to do, due to bad outer loop performance.
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Finally, we evaluated three different choices of motifs. Despite the non-
convergence of our outer loop, we were able to determine that motif A is a
suboptimal choice of motif, when evaluating its training time and its ranking
performance.

We also saw that when performing full-length motif training, motif A and B
were frequently perfect classifiers, making it very difficult to relate their perfor-
mance to that in the ground truth setting. This shows that matching the size of
the synthetic dataset to the motifs is important for the method to work.

7 Future work

The main issue with the current methodology is the lack of convergence in the
outer loop. The most likely cause for this is a bad choice of outer loop loss
function. This can be likely be resolved if data is available on the loss values of
the motifs in the ground truth setting, by using a different dataset like NATS-
Bench [4] or by recording additional data about the NAS-Bench-101 dataset, so
loss values can be used directly.

An alternative could be to optimize the MSE loss between motif and ground
truth accuracy directly. From the accuracies obtained by motifs A and B, we
can see that with a correctly sized dataset, motif accuracies are in the same
range as ground-truth accuracies, and could be used as a good performance
predictor. Additionally, moving away from using a correlation coefficient in the
loss function would lessen the severity of motifs becoming perfect classifiers, since
the performance difference between a perfect motif and an imperfect network in
the ground truth setting is still meaningful.

Unfortunately, outer loop convergence is a necessity before a more in-depth of
analysis of the merits and demerits of different types of motifs can be conducted.
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