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Abstract. Obtaining large-scale and high-quality training data for multi-
document summarization (MDS) tasks is time-consuming and resource-
intensive, hence, supervised models can only be applied to limited do-
mains and languages. In this paper, we introduce unsupervised extractive
methods for both generic and query-focused MDS tasks, intending to pro-
duce a relevant summary from a collection of documents without using
labeled training data or domain knowledge. More specifically, we leverage
the potential of transfer learning from recent sentence embedding mod-
els to encode the input documents into rich semantic representations.
Moreover, we use a coreference resolution system to resolve the broken
pronominal coreference expressions in the generated summaries, aiming
to improve their cohesion and textual quality. Furthermore, we provide
a comparative analysis of several existing sentence embedding models
in the context of unsupervised extractive multi-document summariza-
tion. Experiments on the standard DUC’2004-2007 datasets demonstrate
that the proposed methods are competitive with previous unsupervised
methods and are even comparable to recent supervised deep learning-
based methods. The empirical results also show that the SimCSE em-
bedding model, based on contrastive learning, achieves substantial im-
provements over strong sentence embedding models. Finally, the newly
involved coreference resolution method is proven to bring a noticeable
improvement to the unsupervised extractive MDS task.

Keywords: Unsupervised Multi-Document Summarization · Sentence
Embeddings · Transfer Learning · Contrastive Learning · Coreference
Resolution.

1 Introduction

Automatic Text Summarization (ATS) is the task of automatically condensing
long documents into a shorter version that covers the main themes of those
documents. There are two main approaches for ATS: extractive approach and
abstractive approach. In the former, summaries are produced by identifying and
extracting the most relevant sentences from the source documents, while in the
latter, summaries are generated by reformulating and fusing ideas and often
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by using a new lexicon. Abstractive methods may produce coherent and less
redundant summaries based on natural language generation, while extractive
methods enjoy better factuality and efficiency [4]. Motivated by the latter, we
propose to improve the extractive approach by incorporating text understanding
methods as well as coreference resolution techniques.

More precisely, we focus on multi-document summarization (MDS) that aims
to produce a summary from a collection of thematically related documents. We
consider both generic (G-MDS) and query-focused (QF-MDS) tasks. G-MDS
systems produce summaries that represent all relevant facts of the source docu-
ments without considering the users’ information needs. Besides, QF-MDS sys-
tems generate summaries that answer specific users’ queries [19, 20]. Further-
more, we adopt an unsupervised approach that does not require labeled training
data nor domain knowledge. Multi-document summarization task has received
significantly less attention compared to single-document summarization, partly
due to the scarcity of suitable data required for learning models [23]. Human an-
notation for summarization tasks, especially MDS, is a substantial time-requiring
and costly manual effort. It is also unrealistic to expect that large-scale and high-
quality labeled datasets will be created for different styles, domains, and lan-
guages. Additionally, introducing multi-document into the summarization task
causes other difficulties. For instance, the extracted sentences may contradict
each other because there is more diverse and conflicting information among doc-
uments. Moreover, information redundancy is omnipresent in MDS and has a
significant impact on the information diversity of the generated summaries. The
complexities of all these issues make the multi-document summarization a chal-
lenging task.

Furthermore, generating a relevant summary is a cognitive process that re-
quires a deep understanding of the source documents as well as linguistic com-
petence. Thus, creating internal representation to understand and analyze the
semantic information of the source documents is a cornerstone step in text sum-
marization methods. Bag-of-words and word embedding representations have
shown promising results in text summarization [28, 36]. However, they do not
consider the ordering of words in sentences as well as the semantic and syn-
tactic relationships between them, and thus they may map semantically similar
sentences into different vectors. Therefore, we need more accurate text represen-
tation methods that capture the semantic content of the source documents.

Recently, contextual pre-trained sentence embedding models, including in-
ferSent [9], BERT encoder [10], simCSE [16], sentence-BERT [32], and others
have demonstrated impressive performance in various NLP tasks [9, 10, 16, 32].
In this work, we apply several existing sentence embedding models to represent
the documents’ sentences as dense vectors in a low dimensional vector space
and determine how well they capture relevant information to the unsupervised
extractive multi-document summarization tasks (G-MDS and QF-MDS). Fur-
thermore, we assess their performance, using ROUGE method [22], on the stan-
dard DUC’2003-2004 and DUC’2005-2007 datasets for the G-MDS and QF-MDS
tasks, respectively. The experimental results show that the simCSE embedding
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model [16], based on contrastive learning [8], brings substantial improvement
over several other strong sentence embedding models.

Meanwhile, despite countless successes of the extractive methods, the gen-
erated summaries may contain incoherent sentences, as pronominal coreference
expressions may appear unbound [1]. To alleviate this issue, we use a coreference
resolution system (i.e. NeuralCoref1) to detect the broken pronominal corefer-
ence expressions in the selected sentences, and then rewrite those sentences by
substituting with correct mentions. Advantageously, the proposed methods have
achieved encouraging results, as the final summaries reached better ROUGE
scores. We find also that our unsupervised extractive methods (G-MDS and QF-
MDS) yield promising performance compared to the best-performing systems,
including recent supervised deep learning-based methods.

The paper consists of the following sections: In Section 2, we briefly review the
recent existing sentence embedding models. In Section 3, we present our generic
and query-focused multi-document summarization methods. In Section 4, we
analyze and compare the strengths and weaknesses of the described models and
methods. Finally, in Section 5, we conclude the paper and outline some future
directions in the field.

2 Related Work

The main objective of this work is to assess the performance of recent sentence
embeddings in the context of unsupervised extractive multi-document summa-
rization, considering both generic and query-focused tasks. To make the paper
self-contained for reading, we briefly introduce the sentence embedding models
exploited in this work. However, for readers who are interested in an overview
of text summarization methods, they may refer to these recent surveys [12, 15].

Several sentence embedding methods exist that aim to encode sentences into
dense vectors, which accurately capture the semantic and syntactic relationships
between these sentences’ constituents. Early work mostly concentrate on weight-
ing and averaging words embedding vectors to construct the sentence embed-
ding vector. In this context, the author in [13] has introduced the unsupervised
smoothed inverse frequency (uSIF) model, which uses a pre-trained word vec-
tor model, tuned on the ParaNMT-50 dataset [38], to generate word embedding
vectors. Then, it creates sentence embedding vectors using the weighted aver-
age of word embedding vectors followed by a modification with singular vector
decomposition and an unsupervised random walk algorithm.

In recent years, learning universal sentence embeddings using pre-trained
models has gained much attention in NLP and tackled extensively in the liter-
ature [7, 9, 10, 16, 32]. For instance, Cer et al. [7] have introduced the universal
sentence encoder DAN (USE-DAN) based on a deep average network [17]. It
takes the average of word embeddings and bi-grams as input, which are then
passed through a feed-forward neural network to produce the final sentence em-
bedding vector. It is trained using unlabeled data selected from Wikipedia, web

1 https://github.com/huggingface/neuralcoref
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news, web question-answer pages and discussion forums. Then, it is fine-tuned
on the natural language inference task using the Stanford Natural Language In-
ference (SNLI) dataset [2], which has shown promising performance in various
NLP tasks [7]. Besides, other embedding models use recurrent neural networks
for learning universal sentences’ representations. In this context, the supervised
InferSent [9] trains a bi-directional long short-term memory network with max-
pooling on the SNLI dataset. It has proven the suitability of natural language
inference for transfer learning to other NLP tasks.

Furthermore, pre-trained sentence embedding models based on the Trans-
former architecture [37] have shown tremendous success in text encoding [7, 10,
16, 32]. In this context, Cer et al. [7] have introduced the universal sentence
encoder (USE-Transformer) that uses the encoding sub-graph of the Trans-
former for sentence representation learning. Similarly to the USE-DAN model,
the USE-Transformer is also trained on unlabeled data from Wikipedia, web
news, web question-answer pages and discussion forums. Then, it is fine-tuned
on the SNLI and the question-answering SQuAD datasets [2, 29]. In the same
vein, other researchers have introduced the Bidirectional Encoder Representa-
tions from Transformers (BERT) model [10], which is based on a multi-layer
bidirectional transformer encoder with attention mechanisms. BERT is trained
on a large amount of unlabeled data selected from English Wikipedia and Book-
Corpus, using two unsupervised tasks: the masked language modeling and the
next sentence prediction. Then, the pre-trained BERT can be fine-tuned on new
NLP tasks using task-specific data. It has achieved impressive performance in a
wide range of NLP tasks, including single text summarization [24].

Nevertheless, other researchers have introduced Sentence-BERT (SBERT)
model [32], a modified version of the original pre-trained BERT model, which is
mainly based on the siamese neural networks [3]. SBERT combines two BERT
encoders into a siamese architecture to process two sentences in the same way,
simultaneously. This two sub-networks derive semantically meaningful sentence
embeddings2, which can be then compared using the cosine similarity metric. It
is trained on the combination of the SNLI [2] and Multi-Genre NLI [39] using
the classification, regression, and triplet objective functions, depending on the
available training data. Indeed, SBERT has shown state-of-the-art performance
on the common STS benchmark [6] and transfer learning tasks.

More recently, the SimCSE embedding model [16], based on contrastive learn-
ing [8], has greatly advanced state-of-the-art sentence embedding methods. Con-
trastive Learning [8] is a machine learning paradigm that aims to learn effective
representation by pushing semantically close neighbors towards each other in
the embedding space, while pulling non-neighbors against each other. In con-
junction with this, Gao et al. [16] have introduced two variants of SimCSE: 1)
The unsupervised SimCSE that simply takes an input sentence and predicts it-
self in a contrastive learning framework, with only standard dropout used as
noise; 2) The supervised SimCSE that incorporates annotated pairs from the
NLI datasets [2, 39] into contrastive learning by using entailment pairs as posi-

2 Semantically meaningful means similar sentences are close in the vector space.
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tives and contradiction pairs as hard negatives. The authors have demonstrated
that the contrastive learning objective can be extremely effective when coupled
with pre-trained language models such as BERT [10].

Sentence embedding models are often evaluated at the time of their intro-
duction with regard to the current state-of-the-art methods. Hence, it is rare
when a single work presents a comparison of several embedding models for a
specific task, we need to gather the results from numerous individual contri-
butions. To the best of our knowledge, this is the first work that presents a
comparative study of sentences embedding models for unsupervised generic and
query-focused multi-document summarization tasks.

3 Multi-Document Summarization Methods

An extractive multi-document summarization method aims to identify and ex-
tract the most relevant sentences from a cluster of documents and adequately
assemble them to form the final summary. Generally, the process of an extractive
method involves the following main steps: text pre-processing, text representa-
tion, sentence scoring and selection, and sometimes a few extractive methods
include other sentence-level operations such as sentence reordering or corefer-
ence resolution as a post-processing step [1].

3.1 Text Pre-processing

Given a cluster D = {d1, d2, ..., dn} consisting of n documents, we first split
each document di into a set of sentences using the spaCy library3, in particu-
lar, the pre-trained model ”en core web md”. Then, we use the NLTK library4

and regular expressions to perform tokenization, lowercasing, stemming, and to
remove special characters (e.g. XML/HTML tags, URLs, email addresses, and
redundant white-space). Hence, we obtain a cluster D of N sentences, denoted as
D = {S1, S2, ..., SN}. It is worth mentioning that for the query-focused summa-
rization task, we also need to pre-process the pre-given user’s query and represent
it as a simple sentence Q.

3.2 Text Representation

Text representation plays a central role in extractive multi-document summa-
rization methods to understand the content of the source documents. Thus, we
leverage the potential of sentence embedding models (described in Section 2) to
convert the documents’ sentences into numeric fixed-length vectors that capture
their semantic. They are two main approaches to use pre-trained sentence em-
bedding models, namely 1) feature-based approach and 2) fine-tuning approach.
In the former, the pre-trained model is used to extract fixed features for the input

3 https://spacy.io/
4 https://www.nltk.org/
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documents’ sentences, which can be used as input to the task at hand without
any other modification. In the latter, the pre-trained model is fine-tuned on
the downstream task where parameters of some layers are fixed and others are
learned using the task-specific data.

Since we introduce in this paper unsupervised extractive methods, we opt
for the first approach (feature-based approach). More precisely, given the cluster
D = {S1, S2, ..., SN}, we use a sentence embedding model (e.g. BERT, SBERT,

and others) to map each sentence Si in D into an embedding vector
−→
SD
i . Note

that for the QF-MDS task, we also map the user’s query into an embedding

vector
−→
Q using the same sentence embedding models.

3.3 Sentence Scoring and Selection

Sentence scoring methods assign a score for each sentence in the cluster of doc-
uments to decide which sentences are most relevant to be selected as summary.
For the generic G-MDS task, we measure the relevance of each sentence Si in
the cluster D without taking account of the user’s specific need, while for the
query-focused QF-MDS task, we score each sentence Si in D based on its rele-
vance to the input user’s query Q. Our G-MDS and QF-MDS sentence scoring
methods are successively described in the following.

Generic-MDS Task. Given a cluster D = {S1, S2, ..., SN} of N sentences, we
assign a score for each sentence Si in D by linearly combining three metrics,
namely sentence content relevance, sentence novelty, and sentence position.

– Sentence content relevance score, formally defined in Eq. 1, is computed

using the cosine similarity between the sentence embedding vector
−→
SD
i and

the centroid embedding vector of the cluster of documents
−→
CD (defined in

Eq. 2).

scorecontRelevance(Si, D) =

−→
SD
i .

−→
CD

||
−→
SD
i || . ||

−→
CD ||

(1)

−→
CD =

1

N

N∑
i=1

−→
SD
i (2)

Where
−→
CD is the centroid embedding vector of the cluster D, N is the num-

ber of sentences in D, and
−→
SD
i is the embedding vector of the sentence Si.

The scorecontRelevance is bounded in [0,1] where sentences with higher scores
are considered more relevant.

– Sentence novelty score, denoted as scorenovelty(Si, D), is explicitly used
to deal with redundancy and to produce summaries with good information
diversity [20]. More precisely, for each sentence Si in the cluster D, we com-
pute its similarity with all the other sentences inD using the cosine similarity
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between their corresponding embedding vectors. Then, if the maximum of
the obtained similarities is below a given threshold τ , then the sentence Si

is considered novel. However, when the similarity between two sentences is
greater than the given threshold, the sentence with the higher content rele-
vance score gets the higher novelty score.

– Sentence position assigns a score for each sentence based on its position
in the document, assuming that the first sentences of a document are more
relevant to the summary [20]. Given D a cluster of n documents where each
document d consists of M sentences d = {S1, S2, ..., SM}, we compute the
sentence position score of each sentence Sj in d using the following equation:

scoreposition(Sj) = max(0.5, exp(
−p(Sj)
3
√
M

)) (3)

Where M is the number of sentences in the document d, and −p(Sj) is the
jth position of Sj in d with p(Sj) = 1 for the first sentence and so on.
The scoreposition(Sj) is bounded between 0.5 and 1, where it is higher for
sentences located at the beginning of the document. It gets stable at a value
of 0.5 after a given number of sentences depending on the total number of
sentences in the document.

Finally, we linearly combine these three metrics to get the final score of each
sentence Si in the cluster D, formally defined in the following equation:

scorefinal(Si, D) = α∗scorecontRelevance+β∗scorenovelty+λ∗scoreposition (4)

Where, α + β + λ = 1 with α, β, λ ∈ [0, 1] with constant steps of 0.1. The
top-ranked sentences are iteratively selected to form the summary w.r.t. the
constraint on summary length L.

Query-Focused-MDS Task. Given a cluster D = {S1, S2, ..., SN} of N sen-
tences and a user’s query Q, we measure the relevance of each sentence Si in D
according the query Q using the cosine similarity between their embedding vec-

tors
−→
SD
i and

−→
Q , respectively. Then, based on the obtained scores, we iteratively

select the top-k ranked sentences such as k ∈ {50, 100}, formally denoted as
top-k = {S1, S2, ..., Sk}. Next, we use a modified Maximal Marginal Relevance
method [5, 19] that incorporates sentence embeddings to re-rank the top-k se-
lected sentences intending to produce summaries that are relevant to the query
Q and less redundant.

Finally, based on the obtained MMR sentences’ scores, we apply a greedy
search algorithm to select the relevant sentences to the input user’s query, where
a new sentence is added to the current summary if the constraint on the length
limit L is not reached and the semantic similarity between this sentence and the
already selected summary sentences is below a threshold τ .
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3.4 Post-processing

As previously stated, extractive methods have proven to be effective for text
summarization tasks, however, the generated summaries may lack cohesiveness
since they sometimes contain broken pronouns. To address this issue, we use the
NeuralCoref5 model to detect each broken pronoun in the generated summary
and then replace it with its corresponding entity. Nevertheless, as illustrated in
the following example S1, the simple strategy of replacing every pronoun may
cause redundant information and repetitive entity references in the generated
summary.

– Example S1: On primary and secondary education, Mrs Gillian Shep-
hard, the education secretary, announced tougher standards for teaching
English in England and Wales, she (Mrs Gillian Shephard) launched an
initiative to raise public consciousness about the need for good communica-
tion skills

To deal with this issue, we apply a rule-based heuristic that for each sentence
in the generated summary, it keeps the pronoun if it appears after its referents;
otherwise, the pronoun is unbound and must be replaced by its entity. The idea is
very straightforward: substituting only the anaphoric expressions whose contexts
are not present in the produced summaries.

4 Experiments

In this work, we are more interested in the degree to which the different sentence
embedding models capture contextual and relevant information for solving un-
supervised multi-document summarization tasks. Therefore, we present in this
section all the experiments that are carried out to investigate the performance
of the exploited models w.r.t the G-MDS and QF-MDS tasks.

4.1 Evaluation Datasets and Metrics

The experiments are carried out using the standard DUC’2003-2007 bench-
marks6, created essentially for evaluating multi-document summarization tasks.
Table 1 summarizes some basic statistics of the used datasets.

For the evaluation measures, we use ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) method [22], in particular ROUGE-N (R-1, R-2, R-4)
and ROUGE-SU4, adopting the same ROUGE settings7 used for evaluating
multi-document summarization methods.

5 https://github.com/huggingface/neuralcoref
6 https://duc.nist.gov/data.html
7 ROUGE-1.5.5 with parameters ”-n 4 -m -l 100 -c 95 -r 1000 -f A -p 0.5 -t 0” (G-MDS),

”-a -c 95 -m -n 2 -2 4 -u -p 0.5 -l 250” (QF-MDS)
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Table 1. A description of DUC’2003-2007 datasets [19, 20]. Num docs is the number
of docs in each cluster. Sum length is the number of words in gold summaries.

Dataset Clusters Num docs Sentences Queries Sum Length Task

DUC’2003 30 10 7691 – 100 G-MDS

DUC’2004 50 10 13135 – 100 G-MDS

DUC’2005 50 32 45931 50 250 QF-MDS

DUC’2007 45 25 24282 45 250 QF-MDS

4.2 Experimental Setup

The introduced G-MDS and QF-MDS methods have been developed using Py-
Torch and a set of python tools, including the TrecTools8 library and the avail-
able implementation of sentenc embedding models in Hugging Face9, TensorFlow
Hub10, and GitHub11. Each model is designed to embed a sentence into a fixed
dimensional length vector. For BERT, SBERT, and SimCSE-BERT, we used
BERTbase model that produces embeddings vectors of 712 dimensions. The uni-
versal sentence encoders USE-DAN and USE-Transformer generate embeddings
vectors of 512 dimensions, while the supervised InferSent-GloVe model produces
embeddings vectors of 4090 dimensions.

For the G-MDS task, we need to optimize the hyper-parameters α, β, λ, and
the threshold τ . Thus, we built a small held-out set by shuffling and randomly
sampling 20 clusters from DUC’2002 dataset. Then, we performed a grid search
on the held-out set under the condition α+β+λ = 1, which gave us a total of 330
feasible combinations. Accordingly, the obtained values of the hyperparameters
are 0.6, 0.2, 0.2, and 0.95 for α, β, λ, and τ , respectively.
For the QF-MDS task, we follow the same approach to optimize the three used
hyper-parameters (i.e. the number of top ranked sentences k, the interpolation
coefficient λ, and the threshold τ). We create a small held-out set by shuffling
and randomly sample 20 clusters from DUC’2006 dataset. Then, we apply a
grid search on the held-out set that gave us a total of 200 feasible combinations.
Accordingly, the optimized values of λ, τ , and k are 0.9, 0.85, and 50, respectively.

Furthermore, for the statistical significance test, we used the paired t-test [11]
to determine whether there is a significant difference in performance among all
the evaluated models. Our choice is motivated by the fact that the authors in [31]
have demonstrated that the paired t-test is more powerful than the equivalent
unpaired test when applied to compare the outputs of two automatic text sum-
marization systems. We attached a superscript to the performance number in
the tables when the p− value < 0.05.

8 https://pypi.org/project/trectools/
9 https://huggingface.co/

10 https://tfhub.dev/google
11 https://github.com/facebookresearch/InferSent, https://github.com/kawine/usif
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4.3 Results

Comparison of the different sentence embeddings w.r.t to the unsu-
pervised G-MDS and QF-MDS tasks. The main objective of this paper is
to examine the influence of transfer learning from sentence embedding models on
the unsupervised multi-document summarization, considering both G-MDS and
QF-MDS tasks. Tables 2 and 3 summarize the evaluation results of the different
used text representation methods on G-MDS and QF-MDS tasks, including: a)
Bag-of-words representation based on TF-IDF weighting scheme [30]; b) Word
embeddings using the average of GloVe embeddings [27]; c) Unsupervised sen-
tence embedding models using the average of BERT embeddings [10] and uSIF
model [13]; d) Semi-supervised models using the universal sentence encoders
(USE-Transformer, USE-DAN) [7]; e) Finally, supervised sentence embedding
methods using InferSent [9], Sentence-BERT [32], and SimCSE [16] models.

Table 2. Comparison results of the used sentence embeddings w.r.t to the G-MDS
task based on ROUGE recall scores. The superscripts number indicates significant
improvement (p− value < 0.05) over the sentence embedding model that has the same
superscript number attached.

MODELS DUC’2003 DUC’2004

R-1 R-2 R-4 R-1 R-2 R-4

BOW and Word Embedding Models

TF-IDF1 35.833 7.623 1.013 36.413 7.973 1.213

Avg. GloVe Embedding2 36.721,3 8.451,3 1.123 37.101,3 8.801,3 1.323

Unsupervised Models

BERT Embedding3 28.03 4.48 0.45 28.92 4,43 0.59

uSIF4 38.291-3 9.271-3 1.481,3 39.721-3 9.791-3 1.651-3

Semi-Supervised Models

USE-DAN5 38.351-3 9.061-3 1.281,3 40.141-3,7 9.851-3 1.581-3

USE-Transformer6 38.561-3,7 9.361-3 1.521-3 40.321-3,7 9.941-3 1.671-3

Supervised Models

InferSent-GloVe7 37.591-3 9.011-3 1.471,3 38.711-3 9.171-3 1.381,3

SBERT8 39.241-7 9.721-3 1.681-3 40.581-3,7 10.041-3 1.841-3

SimCSE9 40.321-8 9.981-7 1.921-3,5 40.961-8 10.231-7 1.961-7

As shown in Table 2, the average of GloVe embeddings has significantly out-
performed the TF-IDF model and BERT embeddings on the two used datasets
and for most of the evaluation measures (R-1, R-2, and R-4). Noticing that
using BERT model adopting the feature-based approach leads to rather poor
performance, which is worse than computing the average of GloVe embeddings
and TF-IDF model. The results show also that uSIF, USE-DAN, and USE-
Transformer models have shown promising performance and outperformed the
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supervised InferSent-GloVe model for most of evaluation measures. However, the
difference between them is not statistically significant. Moreover, the SBERT
model, based on siamese architecture, has outperformed all the other models
except the SimCSE-BERT model, which has shown the best performance for all
the evaluation metrics and on the two used datasets.

Table 3. Comparison results of the used sentence embeddings w.r.t to the QF-MDS
task based on ROUGE recall scores. The superscripts number indicates significant
improvement (p− value < 0.05) over the sentence embedding model that has the same
superscript number attached.

MODELS DUC’2005 DUC’2007

R-1 R-2 R-SU4 R-1 R-2 R-SU4

BOW and Word Embedding Models

TF-IDF1 35.02 7.25 13.16 36.32 9.22 13.88

Avg. GloVe Embedding2 37.661,3 7.671,3 14.051,3 40.221,3 9.623 15.231,3

Unsupervised Models

BERT Embedding3 35.15 6.64 12.62 36.63 7.74 13.24

uSIF4 37.811,3 7.681,3 14.311,3 41.541-3 10.083 17.051-3

Semi-Supervised Models

USE-DAN5 38.551-4 7.621,3 14.761-3 42.541-4 10.411-3 17.841-4

USE-Transformer6 39.651-4,7 8.211-4,7 15.51-4, 7 43.371-4,7 11.101-4,7 18.111-4,7

Supervised Models

InferSent-GloVe7 38.031-3 7.75 14.471,3 42.061-3 9.963 17.371-3

SBERT8 40.071-5,7 8.571-5,7 15.721-5,7 43.751-5,7 11.271-5,7 17.961-4

SimCSE9 40.921-8 8.701-7 16.191-7 44.231-8 12.061-7 18.651-4,7

As regards the QF-MDS task, the trend is similar. From Table 3, it seems
clear that the SBERT and SimCSE-BERT models have achieved the best perfor-
mance and led to significant improvement over most other models for all the eval-
uation measures (R-1, R-2, R-SU4). Furthermore, the universal sentence encoder
USE-Transformer model has achieved better results than the USE-DAN and sig-
nificantly outperformed the other models on both DUC’2005-2007 datasets and
for most evaluation measures.

Therefore, the overall comparison of the exploited sentence embedding mod-
els has drawn the same conclusions on all the used datasets with regard to both
G-MDS and QF-MDS tasks. More precisely, directly using BERT with no fine-
tuning provides sentence embeddings, which are not suitable for the unsupervised
multi-document summarization tasks; they yield slightly worse results than all
the other models, including bag-of-words and word embeddings representations.
Moreover, even though the supervised InferSent model is based on bidirectional
LSTM networks and trained on the human-labeled SNLI dataset [2], it achieves
comparable performance to the unsupervised uSIF model. This proves the ef-
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fectiveness of uSIF sentence embeddings for the unsupervised multi-document
summarization tasks.

Furthermore, the universal sentence encoder USE-Transformer has shown
better performance that the USE-DAN. This can be due to their different archi-
tectures as well as the used training datasets. In fact, the USE-Transformer is
further fine-tuned on the question-answering SQuAD dataset [29], and thus the
knowledge gained from this related learning task helps boost the performance
of the unsupervised MDS task. Additionally, we find that SBERT, based on
siamese architecture and fine-tuning mechanisms, performs better than all the
other previous models. Noticing that the SimCSE embedding model, based on
the contrastive learning [8], has shown the best performance for both G-MDS
and QF-MDS tasks.

Comparison with state-of-the-art methods. To prove the effectiveness of
the introduced methods, we compare their performance with the best performing
supervised and unsupervised state-of-the-art systems. ROUGE recall scores of
the different systems used for comparison are summarized in Tables 4 and 5. It
is worth mentioning that for the state-of-the-art methods, we report the results
presented in their corresponding papers on DUC’2004 and DUC’2007, consid-
ered as the most used datasets for evaluating extractive G-MDS and QF-MDS
systems. However, for our methods, we report the results obtained using the
SimCSE embedding model, which achieves the best performance.

Table 4. ROUGE score of the G-MDS systems on DUC’2004 dataset.

System R-1 R-2 R-4

DPP [18] 39.79 9.62 1.57

ConceptBased ILP [26] 38.65 10.02 1.67

PG-MMR [21] 36.42 9.36 −−
Hi-MAP [14] 35.78 8.9 −−

GMDS-SimCSE (ours) 40.96* 10.23* 1.96*

The first set of analyses is performed to compare our GMDS-SimCSE
method with unsupervised systems, including the DPP [18] and the Concept-
Based ILP [26], which are considered as the best-performing extractive generic
MDS systems on DUC’2004 dataset. As shown in Table 4, our method has
achieved the best performance for all the evaluation measures (R-1, R-2, and
R-4). More precisely, it achieves an increment of 1.17% w.r.t the DPP system
for the R-1 measure and an improvement of 0.21% and 0.29% w.r.t the Concept-
Based ILP system for R-2 and R-4, respectively.

To further investigate the effectiveness of the introduced method, we compare
its performance with recent supervised systems, including the PG-MMR [21] and
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the Hi-MAP [14] that are mainly based on the pointer-generator networks with
the maximal marginal relevance method [5]. As depicted in Table 4, our method
GMDS-SimCSE has shown better performance than both the PG-MMR and HI-
MAP methods. In particular, it has achieved an increment of 4,54% and 0,87%
with respect to PG-MMR for R-1 and R-2 respectively. This can be explained
by the fact that both PG-MMR and HI-MAP methods have been trained on the
CNN\DailyMail datasets, mainly created for single-document summarization,
where documents are very short compared to a cluster of documents.

The second set of analyses is conducted to evaluate the performance of our
query-focused multi-document summarization method (QFMDS-SimCSE) us-
ing DUC’2007 dataset. We compare it against the best-performing state-of-the-
art methods, including 1) the unsupervised Dual-CES [35] and USE-Transformer-
Sum [19] systems, and 2) the supervised CRSum-SF [33] and SRSum [34] sys-
tems, which are based on convolutional neural networks with attention mech-
anisms. Therefore, as shown in Table 5, in terms of R-1 and R-2 our method
has achieved comparable performance to all the other systems except Dual-CES,
which has yielded very high performance w.r.t R-1 score. This can be because
the Dual-CES system better handles the tradeoff saliency and focus in the sum-
marization process. However, in terms of R-SU4 evaluation measure, our method
has achieved the best performances.

Table 5. ROUGE recall score of the QF-MDS systems on DUC’2007 dataset.

System R-1 R-2 R-SU4

Dual-CES [35] 46.02* 12.53 17.91

USE-Transformer-Sum [19] 43.54 11.42 18.54

CRSum-SF [33] 44.6 12.48 −−
SRSum [34] 45.01 12.8* −−

QFMDS-SimCSE (ours) 44.23 12.06 18.65*

The overall obtained results show that our unsupervised extractive multi-
document summarization methods, based on sentence embeddings and corefer-
ence resolution, achieve promising results for both generic and query-focused
tasks. Moreover, they yield far better performance than the state-of-the-art
methods that are based on bag-of-words and word embeddings representations.
A concrete example of gold summary and our QFMDS-SimCSE system’s out-
put is presented in Table 6 in Appendix A. It can be seen from this example that
replacing the broken pronoun ”They” in sentence ”S3” by its entity ”Richard
Roberts and Phillip Sharp” has improved the cohesion of the generated
summary. Furthermore, this example shows also that the produced summary is
relevant to the input query.
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5 Conclusion and Future Directions

Different from other natural language processing applications, text summariza-
tion is a challenging task that is highly subjective and dependent on the con-
tent. Determining the relevance of information included in documents requires
a deep understanding of the source documents. Therefore, the main objective of
this paper was to investigate the performance of deep understanding methods,
namely recent sentence embedding models, on the unsupervised extractive multi-
document summarization, considering both generic and query-focused tasks. The
results have shown that models based on the Transformer architecture and fine-
tuned on the NLI datasets lead to strong results compared to other models. This
proves the effectiveness of transfer learning from pre-trained sentence embedding
models, which allows benefiting from knowledge learned from other related natu-
ral language understanding tasks to improve the performance of the target task.
Additionally, the results have also shown that the SimCSE embedding model,
based on contrastive learning, has demonstrated substantial improvement in ex-
tractive unsupervised MDS task.

Furthermore, as previously mentioned, supervised multi-document summa-
rization methods require high-quality labeled training data, which is of immense
importance for the success of these methods. However, acquiring such data for
MDS is a cumbersome task, especially for specific domains, where experts are
required to annotate the data. Thus, the recent focus of deep learning research
is to reduce the requirement for supervision in model training. In fact, fine-
tuning deep pre-trained language models has set state-of-the-art performance
on a wide range of NLP applications, however, their generalization performance
drops under domain shift. To mitigate this issue, several self-supervised learning
methods have been introduced in the literature, which are based for instance on
unsupervised domain adaptation or contrastive learning approaches.

Unsupervised domain adaptation methods aim to generalize well on the tar-
get domain by learning from both labeled samples from the source domain and
unlabeled samples from the target domain, while contrastive learning methods
learn to contrast between pairs of similar and dissimilar data points [8]. These
methods have shown impressive performance in several NLP tasks [25]; they fa-
cilitate data-efficient learning, especially when training data is not abundantly
available. Motivated by these findings, we plan to investigate the potential of
self-supervised learning methods, based on unsupervised domain adaptation and
contrastive learning, to improve the abstractive multi-document summarization
tasks.

Finally, we believe that our unsupervised G-MDS and QF-MDS methods that
do not require labeled training data nor domain knowledge can be used as strong
baselines for evaluating extractive multi-document summarization systems.
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A Example of our QFMDS-SimCSE Output’s Summary

Table 6. Example of the generated summary for Cluster D374a from DUC’2005
dataset using our QFMDS-SimCSE method.

Query

• S1 Who are the Nobel Prize winners in the sciences and in economics and what are their prize-
winning achievements? What are common factors in their backgrounds?

Generated summary

• S1 THE WINNERS of the Nobel prizes, announced in Stockholm, made discoveries which helped
to uncover some of the most fundamental processes in science.

• S2 The Nobel Prize in chemistry is shared by Thomas Cech, 41, of the University of Colorado,
and Sidney Altman, 50, of Yale University.

• S3 Richard Roberts and Phillip Sharp(They) have just jointly been awarded the Nobel prize
in medicine.

• S4 Jerome I. Friedman and Henry W. Kendall of the Massachusetts Institute of Technology and
Canadian Richard E. Taylor of Stanford University will share the $700,000 Nobel Prize in physics.

• S5 Murray Gell-Mann won the Nobel prize for physics in 1969, and later helped establish the
Santa Fe Institute, an interdisciplinary foundation devoted to the study of ’complex systems’ as
various as quantum mechanics, the human body, and international economics.

• S6 MR GARY BECKER, named as this year’s winner of the Nobel prize for economics, is proof that
economists have more to offer than dubious forecasts, indecipherable equations and contradictory
conclusions about the behavior of money and markets.

• S7 THE Nobel prize for economics was awarded to Robert Fogel of the University of Chicago and
Douglass North of Washington University in St Louis for pioneering work on the causes of economic
and institutional change.

• S8 The Nobel Prize for Economics was awarded to three ’game theorists’: John Harsanyi, John
Nash and Rheinhard Selten.

• Norman Ramsey of Harvard University will receive half the physics prize for his discovery of the
atomic clock.

• S9 The announcements completed a near-sweep of the science Nobel’s by U.S. researchers this
year, continuing U.S. dominance of the prizes.

Gold summary

• Nobel prizes are award each year for achievements in the physical sciences – physics, chemistry,
medicine, economics, literature and for peace.

• Winners in physics include Norman Ramsey, Wolfgang Paul and Hans Delmelt in 1989 for work
leading to the cesium atomic clock; Jerome Friedman, Henry Kendall and Richard Taylor in 1990
for first detecting quarks; Georges Charpak in 1992 for particle detectors; and Betran Brockhouse
and Clifford Shull in 1994 for work on neutron scattering.

• Chemistry winners include Sidney Altman and Thomas Cech in 1989 for work on RNA; Elias Cory
in 1990 for work on organic synthesis; and Rudolph Marcus in 1992 for electron transfer theory.

• Winners in medicine include J. Michael Bishop and Harold Varmus in 1989 for contributions to
cancer research; Joseph Murray and E. Donnall Thomas in 1990 for work on organ transplants;
Richard Roberts and Phillip Sharp in 1993 for cancer research; and Alfred Gilman and Martin
Rodbell in 1994 for work on proteins.

• Among winners in economics are Robert Fogel and Douglas North in 1993 for work on causes
of economic change; Gary Becker in 1992 for work on the economics of discrimination and human
capital theory; and John Harsanyi, John Nash and Rheinhard Selten in 1994 for work on game
theory.

• Winners share some common background factors, One is that generally took five and 20 years
between a discovery and its recognition.

• Another is that most winners in certain fields were Americans – of 142 medicine prizes awarded,
69 were to Americans.


