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Abstract. Khalil El Hindi has developed a fine-tuning algorithm to
improve the classification accuracy of the Naive Bayes. His algorithm
optimizes the conditional probability tables of the Naive Bayes after the
training phase. The values of the probabilities of a variable are modified
if it causes misclassification of a training instance. The algorithm out-
performs in many cases the Naive Bayes. We analyze the performance
of the algorithm, discussed its issues, and compare it to a modified algo-
rithm. The new algorithm simplifies the formula used in the fine-tuning
algorithm and uses a more efficient scoring metric, the Brier score, to
fine-tune the probabilities. The new algorithm shows an improvement in
terms of classification accuracy on benchmark data sets compared to the
Naive Bayes and fine tuned Naive Bayes.

Keywords: Fine tuning - Naives Bayes - Classification

1 Introduction

Khalil El Hindi has developed a fine-tuning algorithm (FTNB)[I] to improve
the Naive Bayes (NB) classifier. His algorithm adjusts the probability of the
conditional probability table (CPT) to increase the accuracy of the model in
the training set. This optimization outperforms Naive Bayes in many cases. He
has extended his algorithm in different ways. He has built fine-tuning for Tree
augmented Naive Bayes (FTTAN)[2]. It extends the algorithm for TAN and
works in the same way as fine tuning. To increase the performance of FTTAN
he developed, selective fine-tuning for NB (SFTNB) and TAN (SFTTAN)[3]. He
concludes that SFTTAN works better for TAN but NB outperforms SFTNB.
He has also used a differential evolution algorithm to fine-tune Naive Bayes
[4]. He has more recently developed lazy fine-tuning algorithms GLFTNB and
LFTNB[5]. In this paper, he concluded that the LFTNB is the best algorithm.
He also developed other algorithms more specific for text classification that are
beyond the scope of this paper [5]. Attribute weights are also used to improve
the classification accuracy of NB. Zhang combined attribute weight and FTNB
to build a more accurate model [6]. We focus here on the FTNB algorithm. Our
goal here is to optimize the fine-tuning algorithm. The FTBN is studied and
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we introduce a modification to it to improve and simplifie the algorithm. The
remainder of the paper is organized as follows: Section 2 introduces the back-
ground necessary and the FTNB algorithm, section 3 introduces its limitations
of the FTNB algorithm, and section 4 introduces our novel algorithm.

2 Background

2.1 Bayesian Network

A Bayesian network is a direct acyclic graph where the nodes represent variables
and the arcs represent causal interactions between these variables. It is a pow-
erful tool for modeling causal interaction and predicting events [7]. A Bayesian
network is defined as follows:

Definition (Jensen and Nielsen) [8]: A discrete Bayesian network N' = (A, G, P)
consist of

— A DAG G = (V, E) with nodes V' = {vy, ...,v,} and directed links E.

— A set of discrete random variables, X' , represented by the nodes of G.

— A set of conditional probability distributions, P, containing one distribution
P(Xy|Xpa(v)), for each random variable X, € X.

A Bayesian network encodes a joint probability distribution over a set of
random variables, X', of a problem domain. The set of a conditional probability
distributions, P, specifies a multiplicative factorization of the joint probability
distribution over X'.

P(X) = H P(Xv|Xpa(v)) (1)
(vev)

2.2 Naives Bayes

The Naive Bayes classifier is here studied. It has a strong assumption of condi-
tional independence between all variables given the class variable. Let C be the
class variable to predict and X1, ..., X,, the feature variables. Given the Naive
Bayes assumption the joint probability distribution over the variables can be
written as:

P() = PO [[ P(XIC) @

Let (a1,...,a,) be an instance to classify and C the possible classes. Using
the Independence assumption and Bayes formula, the Naive Bayes predicts the
class of this instance according to:
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Cpredicted = argmax P(claq, ..., an)

ceC
_ P(o) [Ti-, Plaile)
A T Play, .y an) (3)

= argmax Ple) 1;[?:1 Plailc)
ceC cec 1=y Plaile)P(c)

The performance of Naive Bayes relies on a good estimate of the conditional
probabilities P(a;|c) and P(c). Those probabilities are estimated on the data
during the training phase of the model. The idea of fine-tuning is to modify
those probabilities to increase the accuracy of the model after training. The
fine-tuning algorithm is defined in the next section.

2.3 Fine tuning algorithm

The idea of fine-tuning is to increase the accuracy of the model on the training
set as described in [I]. For each misclassified instance, meaning that the model
predicted the class cpredicted instead of cyetual, the terms involved in the predic-
tion of ¢predictea are reduced and those involved in cgepuer are increased (with
Cpredicted 7 Cactual)- FOr each misclassified instance the procedure described be-
low is applied.

Let a = (a1, ..., an) be a misclassified instance classified as ¢pregict instead of
Cactual- The update of the probabilities for each a; is defined as:

P(ai|cactual) = P(ai|cactual) + 5(&1‘, Cactual)

P(ai|cpredicted) == P(ai|cpredicted) - 6(041'; Cpredicted)

with
3(as; Cactuar) = M x max P(ai|Cactua) = P(ailCactuat) )€
0(ai; Cpredictea) = (B * Plailcpredicted) — min P(ailcpredicred) Je
The error rate, €, is defined as:
€ = |P(Cactualla) — P(cpredicted|a)]

The coefficients « and 8 are constant larger or equal to 1 which controls the
size of the update. Those constants are set at 2 according to [I] (this value
gives a better result than the value 1 as advised in [5]). n is the learning rate
lower than 1 set at 0.01 according to [I]. The missing values are ignored. The
procedure is applied for each misclassified instance. If the training accuracy
increase after a modification of the conditional probability distributions, the
fine-tuning continues. Algorithm 1 describes the steps of the FTNB algorithm.
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Algorithm 1 FTNB

Inputs:Naive Bayes, Training data
Output: Fine Tune Naive Bayes
Train the model on the training data
while training classification accuracy improves do
Save the model
for each training instance, inst, do
if Cpredicted ?é Cactual then
for for each attribute value, a;, of inst do
p(ai ‘Cactual):p(ai |Cactual)+6(ai7 Cactual)
p(ai ‘Cpredicted):p(ai |Cp'redictcd)'6(ai7 Cp'redicted)
end for
end if
end for

Compute accuracy
end while
return Model

3 Issue with the fine tuning algorithm

The major problem with FTNB is that it uses accuracy to decide whether or
not to continue fine-tuning. In case the accuracy stays the same after a fine-
tuning epoch, it is not clear if it is wise to continue to fine-tune or not. Moreover
small drops of the training accuracy can occur causing the termination of the
algorithm before reaching the global maximum. A more precise scoring metric
is needed to measure the impact of the fine-tuning after each epoch. The above
consideration is illustrated with the typical following example.

To illustrate the issue with the FTNB algorithm we have run the algorithm
on the Parkison data set [I0]. The algorithm is run with 50 epochs and the
accuracy of the test set is calculated for each number of epochs. Figure 1 shows
the training accuracy and testing accuracy for 50 epochs on the Parkinson data.
The figure shows when FTNB stops and what is the actual best number of
epochs. We can observe that fine-tuning more can increase the accuracy even
if it decreases or keeps at the same value the training accuracy for a couple of
epochs. Moreover, the training accuracy curve is very sharp. Small decreases are
very frequent which causes the early termination of the algorithm.

The Brier score can be used to overcome this problem. The Brier score cal-
culates the performance of the model regarding the different probabilities of the
different classes for each prediction. Dealing with the value of the probabilities
allow more fine tuning steps. The use of the Brier score is described in the next
section.
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Fig. 1: Testing and training accuracy of the FTNB on the UCI Parkinson data
set as a function of the number of epochs. The red line indicats the termination

of the FTNB algorithm according to the treditional stopping criterion and the
green line indicats the best value possible.

4 Fine tuning using Brier score

4.1 Brier score

The Brier score is a proper scoring function that asses the classification perfor-
mance of a model. Let n be the number of instances to classify and r the number
of classes. The Brier score is defined as follows [9):

P = %Z > (Plalay) — Ew)® (4)

k=1 I=1

Where Ey; has the value 1 or 0 according to whether the class of the instance
k is the class | or not. Reducing the Brier score will tend to more sharp pre-
dictions. In optimizing the Brier score, for each instance, the probability of the
predicted class will tend to be one and the others 0. The score ranges from 0 to
2, 0 being the optimal score. Below is an example of the calculation of the Brier
score:

Example:

Table 1: Example of 2 instances x7 and x5 to be classified in 3 classes with there
respective probabilities

C1 Cy C3 True class
z1 0.70.20.1 (o
z2 0.2 0.5 0.4 Cs
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The Brier score of Table 1 is calculated as:

B= %([(1 —0.7)% +0.22+0.1%] + [0.2% +0.52 + (1 — 0.4)2]) =0.1975 (5)

This score can be a good candidate for fine-tuning because it will take into
account any increase in the performance of the model even if the increase is very
small. The application of the Brier score for fine-tuning is explained in the next
section.

4.2 Fine tuning with Brier score

The advantage of the Brier score for fine-tuning is that even in case of a small
increase in the classification of the model the algorithm will continue. In the
original FTNB if the accuracy does not increase the algorithm stops. Using Brier
allows small steps that don’t increase the accuracy immediately but increase the
Brier score. The model can therefore be fine tuned more slowly and accurately.
This comes at the cost of a greater number of iterations compared to FTNB.

The idea of the FTNB algorithm is kept but the formula is reduced to only
the learning rate 7. Each node is equally fine-tuned by only the 7 parameter.
It results in a simpler algorithm that more accurately classifies benchmark data
sets than the original fine-tuning algorithm. In case of the probabilities go below
0 after subtracting n we don’t modify the probabilities value.

Example: We illustrate the use of the Brier score with the typical same ex-
ample as in the previous section on the Parkison dataset. Figure 2 shows the
Brier score on the training data for 200 epochs. The Brier score curve is smooth.
The global minima of the curve is found by the algorithm. On the other hand,
the FTBN algorithm finds only the local maxima. We can observe in Figure 2
the number of epochs where the algorithm stops and the optimal value of the
number of epochs. The algorithm still stops earlier but the testing accuracy can
reach a much higher maximal value than with the FTBN algorithm.

5 Experimental results and analysis

The experiment was performed using datasets similar to the one used in the
paper by El Kahindi. Those datasets come from the UCI repository [I0]. The
datasets are discretized if needed using the minimization entropy algorithm.
Eta=0.001 was used for BFTNB. This value provides the best result. Stratified
shuffle split cross-validation was used with a test set of 20% and 100 folds.
A two-tailed-t-test with a 95% confidence interval was used. Random priors
were used for each fold. Laplace smoothing was used for the estimation of the
conditional probability distributions. The code of the algorithm and the data
used are available at the git repository https://github.com/Jomietk/Brier_
FTNB. The code is developed using HUGIN software APT [I1]. The results of the
algorithms are shown in the tables below.
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Brier score as a function of the number of epochs. BFTNB test accuracy as a function of the number of epochs
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Fig. 2: Training Brier score of the BFTNB (a) and testing accuracy (b) on the
UCI Parkinson data set as a function of the number of epochs. The red line
indicates the stop of the BFTNB algorithm according to the stopping criterion.
The green line indicates the best value.

Algorithm 2 BFTNB

Inputs:Naive Bayes, training data
Output: Fine Tune Naive Bayes
Train the model on the training data
while Brier score improves do
Save the model
for each training instance, inst, do
if Cpredicted # Cactual then
for for each attribute value, a;, of inst do
p(ai|Cactual)=pt(ai|Cactual)+n
p(ai ‘Cp'redicted):pt (ai |cpredicted)‘7]
end for
end if
end for
Compute Brier score
end while
return Model
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The average accuracies across all BEFTNB, FTNB, and NB data sets are 81.1,
80.6, and 79.7 respectively. It shows that BFTNB outperforms on average both
algorithms. BFTNB works better and on more data sets than FTNB. But when
the algorithm does not work, it tends to give lower accuracy than NB, while
FTNB tends to give the same result as NB. An interesting consideration that is
not shown in the tables is the cases where the fine-tuning algorithms work better
than the other algorithm and that it works better than the NB algorithm. This
avoids considering the case where NB is better, in which case both algorithms
are not useful and it is less meaningful to compare them. BFTNB performs
significantly better than FTNB and NB in 16 datasets. FTNB performs signif-
icantly better than BFTNB and NB only in 5 datasets. They are also equally
significantly better than NB in 3 datasets. However, the better performance of
FTNB comes at the price of more fine-tuning epochs. The average number of
epochs for BFTNB is 44.8 compared to FTNB 1.2. This is due to the smaller
steps allowed by the use of the Brier score.

We compared the algorithms using the AUC (one versus one with weighted
averages) in Table 4. The results are even better. If we consider only the cases
when the fine-tuning algorithms are better than Naive Bayes. BFTNB works
better than FTNB and NB in 15 cases. FTNB works better than BFTNB and
NB only in one case. This is due to the Brier score improving the probabilities
of the prediction and the AUC not being dependent on the threshold value for
classification. The average AUC of BFTNB, FTNB, and NB is 87.0, 86.3,86.4
respectively. We use the Brier score with the original formula but it didn’t give
successful outcomes. But the global minima with the training data was easier
to find as in Figure 2(a). It was tested for eta=0.01,0.001 beta—=alpha=1,2. For
each combination, it gave the same result as NB or worst.

6 Conclusion

FTNB augments the training phase with fine-tuning to increase the accuracy
of the training data. This algorithm outperforms the Naive Bayes algorithm in
most cases. We have analyzed this algorithm and discussed its problems. It can
stop too early and the terms used in the formula are relatively arbitrary. We have
developed a simpler algorithm using the Brier score. We empirically evaluate the
performance of both algorithms and find that our algorithm outperforms FTNB
in many cases. The Future research will be on finding a more performing formula
to fine tune the probabilities distribution.
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Table 2: Comparison of accuracy between NB, FTBN and BFTBN

NB VS FTNB NB VS BFTNB FTNB VS BFTNB
Interval NB FTNB NB BFTNB FTNB BFTNB
anneal 95.8 96.5 95.8 96.9 96.5 96.9
arrhythmia 70.3 70.9 70.3 69.2 70.9 69.2
balance 90.8 91.1 90.8 92.9 91.1 92.9
breast cancer s 77.5 77 s 77.5 77
bridges V2 59.7 59.7 59.7 58.8 59.7 58.8
bridges V1 62 62 62 62.2 62 62.2
car 85.7 89.3 85.7 85.7 89.3 85.7
cmc 50.7 51.1 50.7 52.1 51.1 52.1
contact lenses 72.6 72.6 72.6 72.8 72.6 72.8
credit g 74.3 74.3 74.3 74.9 74.3 74.9
dermatology 97.8 97.8 97.8 97.7 97.8 97.7
diabetes 75.2 75.3 75.2 75.3 75.3 75.3
flare 85.3 87.2 85.3 87.1 87.2 87.1
glass 70.9 71.1 70.9 70.8 71.1 70.8
haberman 78.6 78.6 78.6 78.5 78.6 78.5
hayes roth 79.9 79.9 79.9 82.2 79.9 82.2
hepatitis 82.7 82.7 82.7 82.8 82.7 82.8
horse colic 85.6 85.6 85.6 85.6 85.6 85.6
hypothyroid 98.7 98.8 98.7 99.1 98.8 99.1
ionosphere 86 85.9 86 86.2 85.9 86.2
krvskp 87.8 96.2 87.8 95 96.2 95
labor 87.3 87.4 87.3 88.2 87.4 88.2
letter recognition 75 75.1 75 81.8 75.1 81.8
lymphography 84.3 84.2 84.2 84.4 84.2 84.4
monks 1 74.9 74.9 74.9 74.8 74.9 74.8
monks 2 62.6 65.4 62.6 62.7 65.4 62.7
monks 3 96.5 96.5 96.5 96.5 96.5 96.5
mushrooms 99 99.9 99 99.8 99.9 99.8
nursery 90.4 90.4 90.4 90.4 90.4 90.4
parkinsons 79.3 79.9 79.3 82.4 79.9 82.4
primary tumor 48.3 48.4 48.3 47 48.4 47
segment 92.5 92.5 92.5 94.2 92.5 94.2
seismic bumps 82.1 92.9 82.1 92.8 92.9 92.8
solar flare 1 69.8 69.8 69.8 67.8 69.8 67.9
solar flare 2 66.9 67 66.9 66.4 66.9 66.4
sonar 74.9 74.9 74.9 73.9 74.9 73.9
soybean 91.6 91.6 91.6 89.7 91.6 89.7
spambase 92.8 94.8 92.8 95.4 94.8 95.4
splice 95.5 95.2 95.5 95.4 95.2 95.4
tae 56.7 56.7 56.7 62.5 56.7 62.5
tic-tac-toe 70.2 73.6 70.2 79.4 73.6 79.4
transfusion 74.6 75.2 74.6 75.7 75.2 75.7
Vehicle 51.5 51.5 51.5 59.6 51.5 59.6
vote 90.1 90.1 90.1 94.1 90.1 94.1
waveform500 80.2 81 80.2 84 81 84
wine 98.1 98.1 98.1 97.7 98.1 97.7
Z00 95.5 95.5 95.5 95.5 95.5 95.5
Average 79.7 80.6 79.7 81.1 80.6 81.1
#Better 19 28 19 28 23 24

#Sig Better 1 16 7 21 10 18
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Table 3: Comparison of the AUC between NB, FTBN and BFTBN

NB VS FTNB NB VS BFTNB FTNB VS BFTNB
Interval NB FTNB NB BFTNB FTNB BFTNB
anneal 98.3 98.4 98.3 98.5 98.4 98.5
balance 86.6 86.8 86.6 86.8 86.8 93
breast cancer 69.7 65.5 69.7 65 65.5 65
bridges V2 83.9 83.9 83.9 83.8 83.9 83.8
Bridge V1 84.7 84.7 84.7 84.6 84.7 84.6
car 97.3 98.2 97.3 97.3 98.2 97.3
cme 70.4 68.9 70.4 70.7 68.9 70.7
contact lenses 91.6 91.6 91.6 91.3 91.6 91.3
credit g Tr.7 76.9 7.7 77.8 76.9 77.8
dermatology 99.9 99.9 99.9 99.9 99.9 99.9
diabetes 80.7 80.7 80.7 80.7 80.7 80.7
flare 67.2 65.5 67.2 65.1 65.5 65.1
glass 88.7 88.7 88.7 88.4 88.7 88.7
haberman 64.9 64.9 64.9 64.9 64.9 64.9
hayes roth 92.9 92.9 92.9 95.2 92.9 95.2
Hepatitis 83.8 83.7 83.8 82.4 83.7 82.4
horse colic 76.3 76.3 76.3 76.3 76.3 76.3
ionosphere 91.6 91.7 91.6 91.3 91.7 91.3
krvskp 95.2 99.4 95.2 99.1 99.4 99.1
labor 96.4 96.4 96.4 95.7 96.4 95.7
letter recognition 98.1 98.1 98.1 98.9 98.1 98.9
monk 1 71.6 71.6 71.6 71.6 71.6 71.6
monk 2 53.6 53.8 53.6 53.6 53.8 53.6
monk 3 98.4 98.4 98.4 98.4 98.4 98.4
mushrooms 99.9 1 99.9 1 1 1
segment 99.2 99.2 99.2 99.5 99.2 99.5
seismic bumps 77.8 74.1 77.8 7.4 74. 7.4
solar flar 1 87.4 87.4 87.4 87.8 87.4 87.8
solar flar 2 87.5 87.4 87.5 87.8 87.4 87.8
sonar 85 83.8 85 83.8 85 83.8
soybean 99.6 99.6 99.6 99.6 99.6 99.6
spambase 96.6 97.5 96.6 97.9 97.5 97.9
splice 99.4 99.4 99.4 99.3 99.4 99.3
tae 77.6 77.6 77.6 78.5 77.6 78.5
tic-tac-toe 74.6 75.8 74.6 86.8 75.8 86.8
transfusion 69.4 70.3 69.4 72 70.3 72
vehicle 76.5 76.5 76.5 80 76.5 80
vote 96.8 96.9 96.8 98.4 96.9 98.4
waveform 5000 95.4 95.8 95.4 96.2 95.8 96.2
wine 99.9 99.9 99.9 99.9 99.9 99.9
700 99.8 99.8 99.8 99.8 99.8 99.8
Average 79.7 80.6 79.7 81.1 80.6 81.1
#Better 11 15 18 22 21 20
#Sig Better 7 11 8 18 7 17
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Table 4: Number of epoch of FTBN and BFTNB

data FTNB BFTNB data FTNB BFTNB
anneal 2.8 25.1 monks 1 0 0.0
arrhythmia 1.6 35 monks 2 1.7 0.3
balance 0.8 31.0 monks 3 0 0
breast cancer 1.2 8.3 mushrooms 2.7 12.3
bridges V2 0.1 79.3 nursery 0 0
bridges V1 0.1 104.9 parkinson 2.4 79.5
car 2.0 0 primary tumor 0.8 41.61
cme 2.0 1 segment 0.0 21.6
contact lenses 0.1 34.8 seismic bumps 1.2 2.0
credit g 0.6 1.7 solar flare 1 0.6 6.7
dermatology 0.05 508.23 solar flare 2 0.6 7.7
diabetes 0.7 2.2 sonar 0.3 49.4
flare 1.6 11.6 soybean 0.0 103.1
glass 0.2 12.9 spambase 2.0 10.2
haberman 0.0 0.0 splice 2.0 11.9
hayes roth 0.0 3.4 tae 0.0 416.8
hepatitis 0.7 49.5 tic-tac-toe 1 6.0
horse colic 0 1.03 transfusion 0.7 3.7
hypothyroid 1.1 5.0 vehicle 0.0 51.3
ionosphere 0.3 101.5 vote 0.2 43.0
krvskp 10.8 2.0 waveform 5000 9.2 6.1
labor 0.0 121.6 wine 0.0 40.3
letter recognition 5.2 6.0 700 0 0
lymphography 0.6 48.4
Average 1.2 44.8 Median 0.57 11.58
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