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Abstract. Real-world sequential decision-making tasks are usually com-
plex, and require trade-offs between multiple – often conflicting – objec-
tives. However, the majority of research in reinforcement learning (RL)
and decision-theoretic planning assumes a single objective, or that mul-
tiple objectives can be handled via a predefined weighted sum over the
objectives. Such approaches may oversimplify the underlying problem,
and produce suboptimal results.
This article serves as a guide to the application of explicitly multi-
objective methods to difficult problems, and is aimed at researchers who
are already familiar with single-objective RL and planning methods who
may wish to adopt a multi-objective perspective, as well as practition-
ers who may encounter multi-objective decision problems. It identifies
the factors that may influence the nature of the desired solution, and
illustrates by example how these influence the design of multi-objective
decision-making systems for complex problems.

1 Introduction

Real-world sequential decision-making tasks can have multiple, often conflicting,
objectives [3,5,6,14,1]. Reinforcement learning (RL) and decision-theoretic plan-
ning have been used extensively to solve sequential decision making problems by
maximising a scalar reward signal [9]. In settings with multiple objectives, RL
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approaches assume the objectives can be combined into a single scalar reward
using a predefined weighted sum. An iterative process is used to tune the weights
for each objective. During learning the algorithm is tuned, turned on, then the
reward function is re-engineered until the behaviour is satisfactory. However,
such an approach may produce suboptimal results in practical settings [10,2,13].

In this work, we argue an iterative process is problematic for a number of
reasons: (a) it is a semi-blind manual process, (b) it prevents people who should
take the decisions from making well-informed trade-offs, (c) it damages the ex-
plainability of the decision-making process, (d) it cannot handle different types
of preferences that human decision makers might actually have, and finally (e)
preferences between the objectives may change over time and a single objective
agent will have to be retrained when this happens.

Let’s briefly consider reason (b), given the reward function needs to be en-
gineered a priori, there is uncertainty as to the effects a reward function may
have on the policy. For example, when training an agent in a power produc-
tion system, we may wish to double the average power output. However, even
if the objectives are linearly weighted in the reward function, simply doubling
the reward associated with power output may not be sufficient to achieve the
desired behaviour, given the relationship between the reward weights and the
objective outcomes may be nonlinear [11]. Generally, an AI engineer is tasked
with adjusting the associated weights for the reward function. Therefore, the
decision power is put where it does not belong: with the AI engineers. By leav-
ing such decisions up to AI engineers, they are effectively making assumptions
about the preferences of the actual decision makers. In practical settings this
is not a responsibility that can be left to AI engineers. By taking an explic-
itly multi-objective approach it is possible to remove such responsibilities from
the AI engineer. Multi-objective algorithms can be used to compute all possibly
optimal policies [7,12,15,8], where the computed policies can be inspected by a
system expert before making a decision.

Considering the reasons outlined above, a multi-objective approach to deci-
sion making is necessary in many practical settings. In this work we outline why
taking an explicitly multi-objective approach to planning and learning may be
essential to deploying AI in decision problems. Moreover, this article provides a
detailed introduction to multi-objective decision making and guides the reader
through getting started with modelling and solving such decision problems.
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