Model-Based Reinforcement Learning with State
Abstraction: A Survey

Rolf A. N. Starre!, Marco Loog!, and Frans A. Oliehoek!

Delft University of Technology, Mekelweg 5, 2628 CD Delft, Netherlands
{R.A.N.Starre, M.Loog, F.A.Oliehoek}Qtudelft.nl

Abstract. Model-based reinforcement learning methods are promising
since they can increase sample efficiency while simultaneously improving
generalizability. Learning can also be made more efficient through state
abstraction, which delivers more compact models. Model-based reinforce-
ment learning methods have been combined with learning abstract mod-
els to profit from both effects. We consider a wide range of state abstrac-
tions that have been covered in the literature, from straightforward state
aggregation to deep learned representations, and sketch challenges that
arise when combining model-based reinforcement learning with abstrac-
tion. We further show how various methods deal with these challenges
and point to open questions and opportunities for further research.

Keywords: Model-based RL - State Abstraction - MDPs

1 Introduction

With roots in sequential analysis [76], Reinforcement Learning (RL) is a general
framework for learning how to act near-optimally in sequential decision-making
problems. A key challenge for RL is sample-efficiency. Sample efficiency is impor-
tant because in many problems it can be expensive, in time or monetary costs,
to collect samples. The combination of Model-based Reinforcement Learning
(MBRL) and abstraction is of interest for improving the sample efficiency of
learning methods that aim to find solutions for sequential decision-making prob-
lems. We define MBRL as an RL method that explicitly learns a model of the
environment. MBRL provides a way to find solutions to difficult problems effi-
ciently [70] and allows for transfer when the tasks shift, or to related tasks [1,
52]. The state representation, the input to a RL method, plays an important role
in the learning process. A state representation will often contain irrelevant de-
tails, e.g., when the input is an image a large amount can consist of background
that has no direct relevance to the task. Abstracting the state representation to
remove parts that are irrelevant for optimal decision-making allows RL methods
to learn much faster. Learning to decide which parts of the state representation
are relevant is a key aspect of abstraction learning.

State abstraction can be carried out in various ways, ranging from state
aggregation [2,44] to deep learned representations [62,65]. We provide a high-
level view of the promising research in the field, covering a wide range of different
types of state abstractions known from the literature.

2 R.A.N. Starre et al.

a

MDP }«— Agent
r]
¢

§ = ()

Fig. 1. RL with abstraction, the agent observes 5 = ¢(s) instead of s. Image from [69].

Recently MBRL, abstraction learning, and related topics have received a
large amount of attention. There are surveys of decision-making under uncer-
tainty [36], MBRL in general [52], deep MBRL [61], and representation learning
in both robotics [42] and MBRL [32]. Our work takes a wider view of abstraction
and focuses on the additional challenges that arise when combining MBRL and
abstraction [1,56, 68, 69]. The contributions of this work are the following: We
detail challenges that arise for the combination of MBRL with abstraction using
the view of abstraction plus RL as a Partially Observable MDP (POMDP). We
show how different approaches for MBRL with state abstraction deal with these
challenges, in the process providing a unified view of a wide range of approaches.
We identify open questions and opportunities for further research.

2 An Overview of State Abstraction for RL

We consider RL in sequential decision-making problems, which can be defined
as an Markov decision process (MDP) [63]: (S, A, T, R,~), where S is a set of
states s € S, A a set of actions @ € A, T a transition function T(s'|s,a) =
Pr(s|s,a), R a reward function R(s,a) which gives the reward received when
the agent executes action a in state s, and v the discount factor (0 <y < 1). For
realistic problems, the state space of the MDP representation is often too large
to tackle directly. One way to reduce the size is to use compact representations
such as state abstractions. Section 2.1 characterizes different state abstractions
methods and briefly describes some of their properties. Section 2.2 describes how
abstraction in an MDP can be viewed as a POMDP and the resulting challenge.

2.1 Characterization of Abstractions

State abstraction can be used to reduce the problem size, by clustering states into
abstract states. This clustering can be defined by using an abstraction function
¢, which maps (or aggregates) ground states s to abstract states 3, where the
bar notation denotes objects in the abstract space. We write this mapping as
¢(s) = 5, such that the abstract state space can be written as S = {¢(s) | s € S}.
The agent then uses the abstract states § and the rewards to learn transitions and
rewards over the abstract state space. State abstraction can result in an abstract

Model-Based Reinforcement Learning with State Abstraction: A Survey 3

state space that is much smaller than the original state space, |S| < |S|, which
can make learning easier.

In the planning setting, where we have access to the model of a problem, many
different abstraction functions have been considered [2,44]. Abstractions group
together states based on certain criteria of the state or state-action pairs. An
example is the (stochastic) bisimulation [21], also known as model-irrelevance
abstraction [44]. In this abstraction, states are only grouped together if their
reward and transition functions in the abstract space are the same, i.e., ¢(s1) =

¢(82) lﬂ

VacaR(s1,a) = R(s2,a), (1)
and Vy g Z T(s'|s1,a) = Z T(s|s2,a). (2)
s'€s’ s'es’

If we have access to the MDP, we can compute a more compact abstract MDP [13]
and find a solution for this smaller problem. One important aspect of these ab-
stractions is whether or not (near) optimal policies for the original policy can be
obtained when the policy is learned from the abstract problem. Several results
showing that this is possible have been obtained for several forms of abstrac-
tions [44,2]. These results make abstractions interesting for RL as they show
that it is possible to significantly reduce the problem size, while still being able
to obtain (near) optimal policies for the original problem.

To allow for further reduction in the problem size also approximate ver-
sions of abstractions, such as the e-bisimulation, have been considered [2,44].
In the approximate versions, the grouping criteria are relaxed. E.g., in the e-
bisimulation the transition and reward functions for grouped states will be close
but not necessarily the same, i.e., ¢(s1) = ¢(s2) iff

VacalR(s1,a) — R(s2,a)| <, 3)
and Vg gl Z T(s'|s1,a) — Z T(s'|s2,a)| <e. (4)
s'es’ s’es’

Several other examples of exact and approximate state abstraction functions
can be found in the literature [2,44]. For a given MDP it is possible to build
an abstract MDP using e-bisimulation criteria [14]. Recent work has introduced
transitive state abstractions, a class of abstractions that can be computed ef-
ficiently [1]. If we have a compact model, the goal is to find a good policy. A
potential issue is that if a learned model is only an approximation of the true
model, small errors can compound when planning for long horizons [72, 80]. Re-
sults for planning have shown that for particular approximate state representa-
tions, such as e-bisimulation, the policy that is learned can still be approximately
optimal [2]. This was also shown when using RL in an abstract MDP [71]. How-
ever, these results assume that we have access to the MDP or an abstract MDP,
which requires the problem to be known and this is typically not the case in RL.

4 R.A.N. Starre et al.

2.2 Abstraction in an MDP as a POMDP

In the general case of MBRL in an unknown MDP with an abstraction ¢, the
situation will be as depicted in Figure 1. While normally the agent would receive
a state s as an observation, this is no longer the case, and the agent receives
observations that correspond to abstract states ¢(s). In this case, the agent will
no longer know exactly in which state it is, making the environment a POMDP [3,
6,32,51,68,69]. Abstraction can be seen as a special case of POMDPs because
the observation is a result of perceptual aliasing, i.e. multiple states are perceived
as the same.

To formalize the combination of abstraction and RL in an MDP as a special
case of a POMDP, we first give the general definition of an infinite horizon
POMDP [34], which can be described by the tuple (S, A, T, R, 2,0,), where
S, A, T, R, and 7 are the same as in the MDP. The {2 is a finite set of observations
0 € {2 that an agent can receive and O is an observation function O(o|a,s’) =
Pr(ola, s’) that gives the probability of receiving an observation o after taking
an action a and ending in state s’. Now, when an RL agent acts in an MDP
but receives observations through ¢, the uncertainty is only due to perceptual
aliasing, which means that the observation is a deterministic function of the state:
O(ola,s") = Pr(o = ¢(s')|a,s’) = Pr(o = ¢(s')|s’). For deterministic functions
¢, this is 1 iff 0 = ¢(s’). The abstraction function ¢ has taken the role of the
observation function O with the observation space being S.

Since we can view the combination of abstraction and RL in an MDP as
a special case of a POMDP, RL methods for POMDPs could be used to find
a solution. A common approach to finding solutions in POMDPs is through
Bayesian RL, for which the Bayes-Adaptive POMDP (BA-POMDP) provides
a framework [64]. Extensions of Bayesian RL for POMDPs are covered in the
survey of Ghavamzadeh et al. [20]. In Deep RL using recurrent neural networks is
one way in which partial observability has been addressed [30, 77]. Specific focus
has been on using variational inference methods [29, 74] and belief tracking [35,
46, 77]. However, these POMDP approaches are often general solutions for any
type of POMDP, they are not necessarily optimal for the special case of the
POMDP induced by abstraction.

Instead of applying POMDP solution methods, it can be tempting to treat
the resulting problem as a Markov problem and try to find a solution in this
way. For instance, this could be tempting when the abstraction clusters together
states with similar transition and reward functions in the abstract space, such as
with a e-bisimulation abstraction. However, it has been observed that treating
this problem as a Markov process can lead to policies that are far from optimal
and there could be no guarantee of finding an optimal solution [1,56,69]. In
general, non-stationarity of the collected data, due to changing behavior of the
policy, has been shown to lead to worse performance in Deep RL [28], and non-
stationarity due to perceptual aliasing can lead to similar problems when not
addressed. Therefore, to find good solutions methods that combine RL and
abstraction should take into account the perceptual aliasing.

Model-Based Reinforcement Learning with State Abstraction: A Survey 5

3 Utilizing Given Abstraction Functions

This section presents an overview of the literature that utilizes an abstraction
function for MBRL. Table 1 summarizes the findings. First Section 3.1 discusses
the relation between abstract MDPs and Robust MDPs (RMDPs), and how
solutions methods for RMDP can allow for obtaining better policies when using
an abstract learned model. Section 3.2 considers the RL setting where we do not
have such a model, but we are given some abstraction function ¢ and see how
abstraction can be leveraged to improve performance. Section 3.3 deals with the
setting where we are given a set of abstractions and have to learn which one
leads to optimal performance. Afterward, Section 4 deals with the setting where
the environment is unknown and we do not have an abstraction function ¢, but
have to learn one online.

3.1 Robust Optimization

The RMDP [79], and the related Bounded Parameter MDP (BPMDP) [22],
extend the MDP definition by allowing for transition functions and reward func-
tions that are uncertain, as quantified by intervals. This is generally motivated
by not having enough data to be sure about the transition functions, but still
being able to give some confidence intervals. Another motivation is inherent un-
certainty for instance caused by having a e-bisimulation, where the uncertainty
intervals are e wide. This makes solution methods for RMDP interesting for
RL with abstraction. Since, if we have learned an e-bisimulation model and can
estimate €, we could apply solution methods for RMDP.

To solve problems with inherent uncertainty, the RMDP includes an addi-
tional set of outcomes B. The transition probabilities and reward function are
a function of both a € A and b € B. From a game-theoretic perspective, B can
be seen as the actions of the adversary [60], which can be state-dependent and
decide over the distribution of the transition and reward function from within
the specified intervals. The solution to a RMDP also includes the policy of the
adversary. For general uncertainty sets for B, it has been shown that the problem
of finding an optimal robust policy is strongly NP-hard [79]. To find solutions
in polynomial time, two main uncertainty sets for B have been considered: s-
rectangular and s,a-rectangular sets [60, 79]. In the first case, the adversary can
independently choose an outcome for each state s. In the second case, the adver-
sary can choose an outcome for each state s and action a independently. Recent
work has also given results when the models of the uncertainty are less strict [23,
50]. Taking into account the uncertainty with robust optimization can lead to
better policies for the real environment [45,79].

There has also been some work that combines abstraction with RMDP [45,
60]. The RAAM algorithm [60] receives as input an abstraction function and
an MDP, then it first constructs an RMDP and uses this to compute an ap-
proximately optimal policy for the original MDP. It is shown that this can be
beneficial in the limit, bounds on the performance are given that are similar to
the bounds for e-bisimulation abstractions in planning [2]. The RAAM approach

6 R.A.N. Starre et al.

was later extended by Lim and Autef [45] who use a kernel-based approach, of
which state abstraction can be seen as a special case.

The work in this section shows that uncertainty about the transition and
reward functions can be dealt with in a principled way, given some uncertainty
intervals. While some work exists that connects this work to abstraction it only
focuses on results in the limit.

3.2 Leveraging an Abstraction Function

Often in RL, the environment will be unknown, but sometimes we have access to
an abstraction function ¢. This ¢ could for instance come from a domain expert,
or it could be the result of the discretization of a continuous problem. With ¢
one could try to learn an abstract model, which is typically done by collecting
data and then constructing a maximum likelihood model for the transition and
reward functions in the abstract space. If we learn a correct abstract model and
find the optimal policy for this problem then this solution can be near-optimal
in the true MDP, depending on the abstraction used [2]. Learning in this way
could be more sample-efficient than learning a model of the full MDP because
the abstract space is smaller.

One difficulty in this setting is learning a correct abstract model in the first
place. In RL, samples usually can be considered independent, and this is used
to show that an accurate model can be learned. In the combination of RL and
abstraction, samples can no longer be considered independent, due to percep-
tual aliasing [27,68,69]. To be able to give sample efficiency results RL plus
abstraction, some work uses the assumption that the collected samples are inde-
pendent [17,59]. The work by Paduraru et al. [59] assumes that they receive a
data set with independent and identically distributed (i.i.d.) samples and show
there is a trade-off between the quality of the abstraction and the quality of the
transition model. The quality of the abstraction is measured in terms of the € of
e-bisimulation, where a larger € means a coarser abstraction and a larger error.
The second error relates to the number of samples we can get for a state-action
pair, where a coarser abstraction gives more samples per state-action pair and
a lower error. Like the work by Paduraru et al. [59], other work has also shown
that the error of the agent can be decomposed into multiple components, which
are based on the asymptotic bias of the representation and overfitting due to
limited data (variance) [17,66]. This bias-variance trade-off indicates that using
abstractions can be especially beneficial when the available data is limited while
being less beneficial when a lot of data is available, which has been illustrated
in experiments [17].

The assumption that the generated data consists of independent samples
does not hold in general. Another way to show that we can learn an accurate
abstract model is by looking at convergence in the limit. The convergence to an
accurate estimation of the abstract model is possible under several conditions,
e.g., when the policy is fixed or when the abstraction is a bisimulation [27, 68].
Having to use a fixed policy can be seen as a downside because a changing policy
that explores helps to learn efficiently [70]. Another downside is that in the limit

Model-Based Reinforcement Learning with State Abstraction: A Survey 7

using the full model will be better than using an abstract model, since only the
error introduced by the bias remains, which is zero for the full model.

Recently, the work by Starre et al. [69] has shown that an accurate abstract
model can still be learned by applying martingale theory [11]. They give the
first finite-sample performance analysis for model-based RL plus abstraction, by
extending the results of an existing algorithm (R-MAX [9]) with the use of an
e-bisimulation abstraction.

This section shows that abstractions can lead to better performance with
fewer data, trading it off with less accuracy when a lot of data is available. For
these methods to work it is required to already have a good abstraction function,
which can be challenging.

3.3 Abstraction Selection

While the work in the previous section focused mostly on the case where we have
one particular abstraction function, there is also a considerable amount that has
focused on state representation selection, where the agent is provided with a set
of state representations (or abstraction functions). It is usually assumed that
these representations are provided by a domain expert and the goal is to select
the best representation, often in terms of regret.

Most of this work focuses on finding representations that make the problem
Markov, rather than on finding good approximate abstractions. To deal with per-
ceptual aliasing most work makes the assumption that the provided set contains
a Markov model of the environment [25,47,48,53,58]. To find a correct repre-
sentation in the online setting these algorithms eliminate non-Markov models
by comparing the obtained rewards during execution with a threshold based on
a Markov model. The work by Lattimore et al. [41] considers a similar setting,
where the dynamics of the true environment depend arbitrarily on the history
of actions, rewards, and observations. Instead of getting a set of representation
functions, they assume access to a given set of models, one of which is a correct
model of the true environment. In this way, they can compare the calculated ex-
pected reward for the given model with the rewards obtained during the process
and eliminate the unlikely models.

Other work does not assume that a Markov representation is available [31,
57], these both use an e-bisimulation type abstraction. The work of Ortner et
al. [57] builds on the work by Maillard et al. [47], by removing the necessity of
having a Markov representation in the set of available representations. However,
the analysis is invalid since it has been shown that there is an issue in the proof
on which they build [18]. They also do not take into perceptual aliasing, since
they use a concentration inequality that requires i.i.d. samples. The work by
Jiang et al. [31] deals with perceptual aliasing by explicitly assuming in their
analysis that a data set consisting of samples that are i.i.d. is available. They
give a performance bound for policies based on a learned abstract model and
split the error into two components, similar to some of the work mentioned in
Section 3.2 [17,59]. These two components are used to create an algorithm that
decides which representation should be used based on the available data.

8 R.A.N. Starre et al.

The methods in this section show that we can learn to select a correct
(Markov) representation, given an initial set of representations. Most of these
methods are not very scalable, as they are tabular, and it can be difficult to find
a good (Markov) representation/abstraction in larger problems.

4 Online Abstraction Learning

The previously discussed works have mostly assumed that an abstract represen-
tation (or a set thereof) is readily available. However, this is not always possible.
Thus, there is work that considers the situation where such an abstraction is not
yet available, and instead has to be learned first, while at the same time learn-
ing about the environment. Two early studies on this topic provided promising
experimental results [40,51]. In Section 4.1, we cover tabular approaches which
have mostly been more theoretical, and in Section 4.2, we cover deep learned
representations focused on scaling up.

4.1 Tabular Approaches

The combination of MBRL and abstraction has also been approached theoreti-
cally. The work by Bernstein and Shimkin [7] gives results for online abstraction
when the transition functions are deterministic, while the work by Ortner [56]
explores the more general case of stochastic transition functions when trying to
learn a e-bisimulation. To learn a e-bisimulation they maintain an interval on
the estimation of the transition and reward functions for each state-action pair,
which is used to create a BPMDP [22]. Subsequently, the BPMDP is abstracted,
by clustering the states that have an overlap in the transition and reward func-
tion for all actions, but only if they have a similar amount of samples. They give
an example to show that it is necessary for clustered states to have a similar
amount of samples for all the actions to obtain good performance. This is an
interesting observation since it points out a problem that should be taken into
account when learning an abstraction in combination with MBRL. A downside
of the method is that it is focused on the computational benefit abstraction can
bring, from the perspective of sample efficiency, a method that utilizes abstrac-
tion to learn more efficiently is desirable.

In the Bayesian RL setting, the work by Mandel et al. [49] proposes an
algorithm that does online clustering and exploration. The clustering is done
over state-action pairs, rather than only over states. State-action abstractions
allow for a wider class of abstractions since state abstractions can be consid-
ered a subset of state-action abstractions, while potentially still being optimality
preserving. This gives additional power in doing the abstraction since in some
domains there could be no similar states while similar state-action pairs exist.
State-action pairs are grouped together when the relative outcomes are likely to
be the same. Relative outcomes are similar to observations and given a relative
outcome the agent knows both the transition and reward, but it needs to learn
the distribution over relative outcomes for each state.

Model-Based Reinforcement Learning with State Abstraction: A Survey 9

Work in block MDPs, or MDPs with rich observations, is a related approach
where the assumption is that each state can generate multiple different observa-
tions [5, 15,24, 39, 81]. Instead of having multiple states that generate the same
observation (due to the abstraction function), each type of observation is only
generated by 1 state, but each state can generate multiple observations. This is
quite similar to representation learning, specifically learning a bisimulation [5,
15,81]. A common approach in this setting is to use spectral methods [5, 24, 39].
For these to work it is necessary to be able to uniquely identify states from the
observation function. While this is possible for model-irrelevance abstractions,
generally in the abstraction setting this will not be possible.

The focus of tabular approaches has been on block MDPs which can lead
to a large reduction in the state space in suitable problems. This does however
require the problem to have a lot of states with the exact same behavior in an
abstract space, i.e., there needs to be a bisimulation abstraction. This restricts
the number of problems these methods can be applied to.

4.2 Deep Learned Representations

There have also been a number of Deep RL approaches that focus on learn-
ing compact state representations, which can be viewed as an instance of state
abstraction, for instance, the approaches by Sermanet et al. [67], Thomas et
al. [73], Biza and Platt [8], Francois-Lavet et al. [16], Van der Pol et al. [62],
Schrittwieser et al. [65], Allen et al. [3], and Ye et al. [80]. One important notion
for abstraction in deep RL is a collapse of the latent representation [3,12, 16, 62].
When considering only the transition function, it would be optimal to cluster
all states into just one abstract state. It has been shown that losses that require
both the transition and reward function of grouped states to be exactly the same
can avoid this collapse [19], making it important to group states based on both
transitions and rewards.

Recently, multiple contrastive methods have been used to learn compact rep-
resentations for predicting the next state [4, 37, 55]. Their representation learning
tries to maximize the mutual information between the present and future sam-
ples. To train the network they use positive and negative next state samples,
where the positive samples are transitions that actually occurred, while the neg-
ative samples are transitions that did not occur. These negative samples should
help to prevent the potential collapse of the state representation. Their methods
do not use the model to plan the policy but instead use actor-critic and policy
optimization methods on top of the representation. The proposed representation
learning method was able to help improve the performance of these methods.

Other work has focused on learning deep representations for robotics [12,
33,43]. This has investigated adding several types of robotic priors in order to
bias the representation learning, which are added to the network as an auxiliary
loss [30]. These priors encode knowledge about physics, e.g., that changes in the
state are often gradual rather than abrupt. The state-representation objectives
were especially useful in generalizing, as they significantly improved the results
in the test domain. This shows that learning a compact model of the environment

R.A.N. Starre et al.

10

Section Method Environment Model Abstraction ¢ Abstraction Type Theory Scalability Perceptual Aliasing

21 Planning MDP Given Constructed Many A% ~ Not an issue
Tabular RL Abstract MDP Given Build-in Bisimulation related V X Not an issue
31 Robust Optimization MDP Given (interval) Build-in Bisimulation \% ~ Assumption on uncertainty
Robust Optimization MDP + ¢ Given Given Bisimulation related ~ X Not an issue
3.2 Tabular RL MDP + ¢ Unknown Given Bisimulation related V X Assumptions on data gathering
3.3 Abstraction Selection MDP + [¢1,- -+, ¢n] Unknown Given Several \Y% X Markov representation, assumption on data gathering
Tabular RL MDP + ¢ Unknown Learned Bisimulation related V X Markov representation, specific check
41 Bayesian RL MDP -+ ¢ Unknown Learned (s,a)-abstraction A% X Markov representation
Spectral Methods Block-MDP Unknown Learned Bisimulation related V ~ Markov representation
Deep RL MDP + ¢ Unknown Learned Bisimulation related ~ A\ Markov representation, potential problem
42 Contrastive Loss MDP + ¢ Unknown Learned Bisimulation related X A% Markov representation, potential problem
Linear Latent Representations MDP + ¢ Unknown Learned Linear Function X A% Markov representation, potential problem

Table 1. Characterization of MBRL methods in combination with a type of state abstraction.

Model-Based Reinforcement Learning with State Abstraction: A Survey 11

can be beneficial even if the model itself is not directly used for planning. Other
methods for robotics focus on finding compact linear representations of a problem
and finding a policy for this smaller model [75, 78, 82]. For robotics, where many
of the important state features could be approximately linear, this has shown
good results.

Most of the work in this section focused on learning exact abstractions. That
is, they try to reduce the problem in such a way that the resulting latent rep-
resentation still makes the problem an MDP. This can be difficult to ensure,
especially in Deep RL, so it is likely that the resulting representation is actually
an approximate abstraction. Since most work does not acknowledge this, they
do not consider the resulting perceptual aliasing, and algorithms can experience
the problem illustrated by [56]: when states are grouped together that have a
different number of visitations this can lead to suboptimal policies. When this is
not taken into account, this can lead an agent to be stuck in a suboptimal loop.

5 Discussion and Conclusion

We summarize our overview in Table 1, which compares the approaches on the
type of environment, whether or not a model is given, how an abstraction ¢ is
obtained, what kind of abstraction is used, available theoretical support, scala-
bility, and how they deal with perceptual aliasing.

The methods in Sections 2 and 3 generally have strong theoretical support
(V) in the form of bounded loss (e.g., [2,79]), finite-sample guarantees (e.g., [59,
69]), or regret bounds (e.g., [48]). Most of these methods are not (X) scalable
due to being tabular or only somewhat scalable (~) due to needing to be given a
model, which in many cases is not possible. In most these works, the problem of
perceptual aliasing does not arise, either because of assumptions on data gath-
ering, or because an MDP, or MDP representation, is provided. Starre et al. [69]
show that finite-sample bounds for MBRL in an MDP with an approximate
abstraction, without making the assumption that samples are independent, can
be obtained, at least when an e-bisimulation abstract is used. Eztending these
results to other types of abstractions is still an open question.

In Section 3.2, we saw that with abstractions there is a bias-variance trade-
off [17,31,59,66]. Because of this trade-off, an interesting direction would be to
combine learning multiple representations with abstraction selection, to decide
which representation to use at which time.

Results for optimization under uncertainty as discussed in Section 3.1 could
make it interesting to maintain confidence intervals for the learned models and
use robust optimization to find policies. Since during learning the model will
generally not be completely accurate, robust optimization could improve per-
formance [45]. Tabular work discussed in Sections 3.1 and 4.1 investigated this
idea [56,60], scaling such approaches to larger problems is an interesting future
direction.

Most of the focus has been on abstractions related to bisimulation. As touched
upon in Section 4.1, abstractions that aggregate state-action pairs can be more

12 R.A.N. Starre et al.

powerful than state abstractions [49]. An open question is what are the best types
of abstraction to use? Non-deterministic abstraction [68], temporal abstraction,
or combinations of abstractions could be powerful but have not been as well
studied [38].

In the work by Schrittwieser et al. [65], there is some indication that in
online planning using a coarser learned model rather than the true model can be
beneficial. With limited planning time, planning with a compact learned model
outperformed planning with the true model of the environment. There could
be a trade-off for learning between the coarseness of the model and the allotted
planning time, a coarser model could perform better with a shorter planning time
but worse with a longer planning time.

The methods in Section 4.2 focus on learning abstractions that result in a
Markov representation, e.g., bisimulation abstractions. However, during learning,
when the abstraction is likely not a Markov representation, perceptual aliasing
occurs. How can the resulting non-stationarity be addressed? In Section 4.1, we
saw that the tabular work by Ortner [56] deals with perceptual aliasing, but
to do so it maintains visitation counts for all state-action pairs. Methods that
are able to maintain counts in an approximate way, such as pseudo-counts [71],
could enable a scalable version of the approach by Ortner [56]. Another approach
to deal with perceptual aliasing in a more sample-efficient way could be using
an algorithm such as ITER [28], which tackles the general non-stationarity of
the data distribution caused by the RL algorithm. The idea of the algorithm
is to frequently transfer the knowledge of the trained network to a new net-
work, and then use the new network for training. The knowledge is transferred
through samples that are obtained from the collected data set as if they had
been generated with the final policy of the trained network.

In multi-agent RL the challenge is to behave optimally in the presence of
other agents whose behavior may be non-stationary [26]. Approaches for the
multi-agent RL problem that address non-stationarity could be insightful for the
combination of RL and abstraction. One approach that could be relevant is trying
to capture the non-stationarity that is the result of perceptual aliasing, which
could for instance be done by using influence-based abstraction [54]. Influence-
based abstraction aims to abstract a problem into a smaller local problem with
a predictor that quantifies the influence of variables outside the local problem
on the local problem. Given an accurate predictor, this results in a Markov
problem. Such a predictor could capture the non-stationarity due to perceptual
aliasing and improve performance. Influence-based abstraction has been applied
together with Deep model-free RL, using a recurrent neural network to capture
the influence, which has shown promising results [10].

Other approaches in multi-agent RL do not deal with the non-stationarity
but simply ignore it, by abstracting away the internal states of the other agents.
Since this can be seen as a special case of the non-stationarity in the combination
of RL and abstraction, insights from this combination on how to deal with non-
stationarity as a result of perceptual aliasing could provide interesting directions
for these multi-agent RL approaches.

Model-Based Reinforcement Learning with State Abstraction: A Survey 13

Acknowledgements This project had received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 758824 —INFLUENCE).

* *

* *

* *
* ok

References

10.

11.

12.

13.

14.

15.

16.

17.

. Abel, D., Arumugam, D., Lehnert, L., Littman, M.: State abstractions for lifelong

reinforcement learning. In: ICML (2018)

Abel, D., Hershkowitz, D., Littman, M.: Near optimal behavior via approximate
state abstraction. In: ICML (2016)

Allen, C., Parikh, N., Gottesman, O., Konidaris, G.: Learning markov state ab-
stractions for deep reinforcement learning. NeurIPS (2021)

. Anand, A., Racah, E., Ozair, S., Bengio, Y., Coté, M.A., Hjelm, R.D.: Unsupervised

state representation learning in atari. In: NeurIPS (2019)

Azizzadenesheli, K., Lazaric, A., Anandkumar, A.: Reinforcement learning in rich-
observation mdps using spectral methods. arXiv (2016)

Bai, A., Srivastava, S., Russell, S.J.: Markovian state and action abstractions for
mdps via hierarchical mcts. In: IJCAI (2016)

Bernstein, A., Shimkin, N.: Adaptive-resolution reinforcement learning with poly-
nomial exploration in deterministic domains. ML (2010)

Biza, O., Platt, R.: Online abstraction with mdp homomorphisms for deep learning.
arXiv (2018)

Brafman, R.I., Tennenholtz, M.: R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. JMLR (2002)

Suau de Castro, M., Congeduti, E., Starre, R., Czechowski, A., Oliehoek, F.:
Influence-based abstraction in deep reinforcement learning. In: AAMAS Workshop
on Adaptive Learning Agents (2019)

Chow, Y.S., Teicher, H.: Probability theory: independence, interchangeability, mar-
tingales. Springer Science & Business Media (2003)

De Bruin, T., Kober, J., Tuyls, K., Babugka, R.: Integrating state representation
learning into deep reinforcement learning. RA-L (2018)

Dean, T., Givan, R.: Model minimization in markov decision processes. In:
AAAI/TAAI (1997)

Dean, T., Givan, R., Leach, S.: Model reduction techniques for computing approx-
imately optimal solutions for markov decision processes. In: Ual (1997)

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik, M., Langford, J.: Prov-
ably efficient rl with rich observations via latent state decoding. In: ICML (2019)
Francois-Lavet, V., Bengio, Y., Precup, D., Pineau, J.: Combined reinforcement
learning via abstract representations. In: AAAT (2019)

Francois-Lavet, V., Rabusseau, G., Pineau, J., Ernst, D., Fonteneau, R.: On overfit-
ting and asymptotic bias in batch reinforcement learning with partial observability.
JAIR (2019)

14

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

R.A.N. Starre et al.

Fruit, R., Pirotta, M., Lazaric, A.: Near optimal exploration-exploitation in non-
communicating markov decision processes. In: NeurIPS (2018)

Gelada, C., Kumar, S., Buckman, J., Nachum, O., Bellemare, M.G.: Deepmdp:
Learning continuous latent space models for representation learning. In: ICML
(2019)

Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A.: Bayesian reinforcement
learning: A survey. Found. Trends Mach. Learn. (2015)

Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in
markov decision processes. Artif. Intell. (2003)

Givan, R., Leach, S., Dean, T.: Bounded-parameter markov decision processes.
Artif. Intell. (2000)

Goyal, V., Grand-Clement, J.: Robust markov decision process: Beyond rectangu-
larity. arXiv (2018)

Guo, Z.D., Doroudi, S., Brunskill, E.: A pac rl algorithm for episodic pomdps. In:
AISTATS (2016)

Hallak, A.) Di-Castro, D., Mannor, S.: Model selection in markovian processes. In:
SIGKDD (2013)

Hernandez-Leal, P., Kaisers, M., Baarslag, T., de Cote, E.M.: A survey of learning
in multiagent environments: Dealing with non-stationarity. arXiv (2017)

Hutter, M.: Extreme state aggregation beyond markov decision processes. TCS
(2016)

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., Whiteson, S.: Transient non-
stationarity and generalisation in deep reinforcement learning. In: ICLR (2021)
Igl, M., Zintgraf, L., Le, T.A., Wood, F., Whiteson, S.: Deep variational reinforce-
ment learning for pomdps. In: ICML (2018)

Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,
Kavukcuoglu, K.: Reinforcement learning with unsupervised auxiliary tasks. arXiv
(2016)

Jiang, N., Kulesza, A., Singh, S.: Abstraction selection in model-based reinforce-
ment learning. In: ICML (2015)

Jie, N.: Representation learning for model-based reinforcement learning: A survey.
tinyurl.com/jieRep (2021)

Jonschkowski, R., Brock, O.: Learning state representations with robotic priors.
Auton. Robots (2015)

Kaelbling, L.P.; Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. (1998)

Karkus, P., Hsu, D., Lee, W.S.: Qmdp-net: Deep learning for planning under partial
observability. arXiv (2017)

Keith, A.J., Ahner, D.K.: A survey of decision making and optimization under
uncertainty. Ann. Oper. Res. (2021)

Kipf, T., van der Pol, E., Welling, M.: Contrastive learning of structured world
models. In: ICLR (2019)

Konidaris, G.: On the necessity of abstraction. Curr Opin Behav Sci (2019)
Krishnamurthy, A., Agarwal, A., Langford, J.: Pac reinforcement learning with
rich observations. arXiv (2016)

Kuvayev, L., Sutton, R.S.: Model-based reinforcement learning with an approxi-
mate, learned model. In: Yale Workshop on Adaptive and Learning Systems (1996)
Lattimore, T., Hutter, M., Sunehag, P.: The sample-complexity of general rein-
forcement learning. In: ICML (2013)

Lesort, T., Diaz-Rodriguez, N., Goudou, J.F.; Filliat, D.: State representation
learning for control: An overview. Neural Netw. (2018)

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Model-Based Reinforcement Learning with State Abstraction: A Survey 15

Lesort, T., Seurin, M., Li, X., Diaz-Rodriguez, N., Filliat, D.: Deep unsupervised
state representation learning with robotic priors: a robustness analysis. In: IJCNN
(2019)

Li, L., Walsh, T.J., Littman, M.L.: Towards a unified theory of state abstraction
for mdps. In: ISAIM (2006)

Lim, S.H., Autef, A.: Kernel-based reinforcement learning in robust markov deci-
sion processes. In: ICML (2019)

Ma, X., Karkus, P., Hsu, D., Lee, W.S., Ye, N.: Discriminative particle filter rein-
forcement learning for complex partial observations. In: ICLR (2019)

Maillard, O.A., Nguyen, P., Ortner, R., Ryabko, D.: Optimal regret bounds for
selecting the state representation in reinforcement learning. In: ICML (2013)
Maillard, O.A., Ryabko, D., Munos, R.: Selecting the state-representation in rein-
forcement learning. NeurIPS (2011)

Mandel, T., Liu, Y.E., Brunskill, E., Popovic, Z.: Efficient bayesian clustering for
reinforcement learning. In: IJCAI (2016)

Mannor, S., Mebel, O., Xu, H.: Robust mdps with k-rectangular uncertainty.
MOOR (2016)

McCallum, A.K.: Reinforcement learning with selective perception and hidden
state. U of Rochester (1996)

Moerland, T.M., Broekens, J., Jonker, C.M.: Model-based reinforcement learning:
A survey. arXiv (2020)

Nguyen, P., Maillard, O.A., Ryabko, D., Ortner, R.: Competing with an infinite
set of models in reinforcement learning. In: AISTATS (2013)

Oliehoek, F.A., Witwicki, S.J., Kaelbling, L.P.: Influence-based abstraction for mul-
tiagent systems. In: AAAT (2012)

Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. arXiv (2018)

Ortner, R.: Adaptive aggregation for reinforcement learning in average reward
markov decision processes. Ann. Oper. Res. (2013)

Ortner, R., Maillard, O.A., Ryabko, D.: Selecting near-optimal approximate state
representations in reinforcement learning. In: ALT (2014)

Ortner, R., Pirotta, M., Lazaric, A., Fruit, R., Maillard, O.A.: Regret bounds for
learning state representations in reinforcement learning. In: NeurIPS (2019)
Paduraru, C., Kaplow, R., Precup, D., Pineau, J.: Model-based reinforcement
learning with state aggregation. In: European Workshop on RL (2008)

Petrik, M., Subramanian, D.: Raam: The benefits of robustness in approximating
aggregated mdps in reinforcement learning. NeurIPS (2014)

Plaat, A., Kosters, W., Preuss, M.: High-accuracy model-based reinforcement
learning, a survey. arXiv (2021)

Van der Pol, E., Kipf, T., Oliehoek, F.A., Welling, M.: Plannable approximations
to mdp homomorphisms: Equivariance under actions. In: AAMAS (2020)
Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley (2014)

Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P.: A bayesian approach for learn-
ing and planning in partially observable markov decision processes. JMLR, (2011)
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,
Guez, A., Lockhart, E., Hassabis, D., Graepel, T., et al.: Mastering atari, go, chess
and shogi by planning with a learned model. Nature (2020)

Serban, I.V., Sankar, C., Pieper, M., Pineau, J., Bengio, Y.: The bottleneck simu-
lator: A model-based deep reinforcement learning approach. JAIR, (2020)

16

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
7.

78.

79.

80.

81.

82.

R.A.N. Starre et al.

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine,
S., Brain, G.: Time-contrastive networks: Self-supervised learning from video. In:
ICRA (2018)

Singh, S.P., Jaakkola, T., Jordan, M.I.: Reinforcement learning with soft state
aggregation. In: NeurIPS (1995)

Starre, R.A.N., Loog, M., Oliehoek, F.A.: An analysis of abstracted model-based
reinforcement learning. arXiv (2022)

Strehl, A.L., Littman, M.L.: An analysis of model-based interval estimation for
markov decision processes. JCSS (2008)

Taiga, A.A., Courville, A., Bellemare, M.G.: Approximate exploration through
state abstraction. arXiv (2018)

Talvitie, E.: Model regularization for stable sample rollouts. In: UAT (2014)
Thomas, V., Bengio, E., Fedus, W., Pondard, J., Beaudoin, P., Larochelle, H.,
Pineau, J., Precup, D., Bengio, Y.: Disentangling the independently controllable
factors of variation by interacting with the world. arXiv (2018)

Tschiatschek, S., Arulkumaran, K., Stithmer, J., Hofmann, K.: Variational infer-
ence for data-efficient model learning in pomdps. arXiv (2018)

Van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.: Stable reinforce-
ment learning with autoencoders for tactile and visual data. In: IROS (2016)
Wald, A.: Statistical Decision Functions. John Wiley (1950)

Wang, Y., Tan, X.: Deep recurrent belief propagation network for pomdps. In:
AAAT (2021)

Watter, M., Springenberg, J.T., Boedecker, J., Riedmiller, M.: Embed to control:
a locally linear latent dynamics model for control from raw images. In: NeurIPS
(2015)

Wiesemann, W., Kuhn, D., Rustem, B.: Robust markov decision processes. MOOR
(2013)

Ye, W., Liu, S., Kurutach, T., Abbeel, P., Gao, Y.: Mastering atari games with
limited data. NeurIPS (2021)

Zhang, A. Lyle, C., Sodhani, S., Filos, A., Kwiatkowska, M., Pineau, J., Gal, Y.,
Precup, D.: Invariant causal prediction for block mdps. In: ICML (2020)

Zhang, M., Vikram, S., Smith, L., Abbeel, P.,; Johnson, M., Levine, S.: Solar:
Deep structured representations for model-based reinforcement learning. In: ICML
(2019)

