
Algorithm Selection for Traveling Salesman
Problem with Simplified PointNet++

Ya Song, Laurens Bliek, and Yingqian Zhang

Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
{y.song,l.bliek,yqzhang}@tue.nl

Abstract. Selecting algorithms for the Euclidean Traveling Salesman
Problem (TSP) is a well-studied topic. In this line of research, researchers
investigate how to construct useful features representing TSP instances
and then apply feature-based machine learning models to predict which
algorithm works best with the given instance. In recent years, Convo-
lutional Neural Network (CNN) has become a popular approach to se-
lect algorithms for TSP. Compared to traditional feature-based machine
learning models, CNN has an automatic feature learning ability and de-
mands less domain expertise. However, it is still required to generate
intermediate representations, i.e., multiple images to represent TSP in-
stances first. In this study, we propose a novel Graph Neural Network
(GNN) called Simplified PointNet++ to select algorithms for TSP. This
model handles the TSP instance as a point cloud, which simply takes the
coordinates of cities as input, and no intermediate representations such as
features or images need to be designed and generated. By hierarchically
aggregating information from the neighborhood of points, the proposed
model can effectively capture local features with multiple scales. We eval-
uate this model on two benchmark datasets, and the results show that it
can outperform traditional feature-based machine learning methods and
is comparable to CNN.

Keywords: Algorithm Selection · Traveling Salesperson Problem · Graph
Neural Network · Point Cloud Classification · PointNet++.

1 Introduction

The Euclidean Traveling Salesman Problem (TSP) is one of the most intensely
studied NP-hard combinatorial optimization problems. It relates to many real-
world applications and has significant theoretical value. TSP can be described
as follows. Given a list of cities with known positions, find the shortest route to
visit each city and return to the origin city. Researchers have developed various
exact, heuristic, and learning-based algorithms to solve this routing problem [1].
As these algorithms’ performance is highly variable depending on the character-
istics of the problem instances, selecting algorithms for each instance helps to
improve the overall efficiency [2]. In [3], the authors firstly studied this algorithm
selection problem and proposed an Automatic Algorithm Selection framework.



2 Y. Song et al.

The framework has been further developed in [4, 5]. This framework interprets
the algorithm selection as a classification problem, and we need to identify the
mapping from Problem Space to Algorithm Space [6]. Traditionally, domain ex-
perts design a group of features [7–9] that can represent the characteristics of
TSP instances. Then, we can train a machine learning classifier such as Support
Vector Machine (SVM) to be the selector using these features. This feature-based
method has several limitations: high requirement for domain knowledge, insuffi-
cient expressiveness of the features, and required feature selection process [10].

Deep learning models, especially Convolutional Neural Networks (CNN),
have recently been applied to select TSP algorithms. By employing images to
represent TSP instances, the algorithm selection problem is transformed into
a computer vision challenge. Since CNN has sufficient automatic feature learn-
ing capability, this approach no longer requires man-designed features and may
perform better. In [10], the authors generate three images: a point image, a Min-
imum Spanning Tree (MST) image, and a K-Nearest-Neighbor (KNN) image to
represent each TSP instance. Then they apply an 8-Layer CNN architecture to
predict which algorithm is better. In [11], researchers use a gridding method to
transform TSP instances into density maps, and then apply Residual Networks
(ResNet) [12] to do the classification. In [2], a similar instance transformation
approach is used to generate images, and then a 3-Layer CNN model is designed
to predict algorithms’ temporal performance at different time steps.

Although the experimental results in [2, 10, 11] show CNN can outperform
traditional feature-based machine learning models in the algorithm selection task
for TSP, this approach still has four main drawbacks:

1. Require to generate Intermediate representations: Similar to feature-
based methods, the instances’ intermediate representations, in this case, the
images, need to be generated as the inputs of CNN. It is usually a tedious
process to transform TSP instances into images. In [10], generating MST
and KNN images for each instance requires time-consuming calculations.
When applying the gridding method to obtain images, the authors perform
several up-scaling operations to improve the resolution [11]. Besides, data
augmentation techniques, like random rotation/flipping, are widely used to
enhance CNN’s generalization ability [2, 10, 11]. As a result, multiple images
must be generated to represent one TSP instance.

2. Introduce problem-irrelevant parameters: When generating images,
the first parameter we need to set is the image size or the number of grids [11].
In [10], authors use solid dots to represent cities and solid lines to connect
cities in MST and KNN images. The dot size and line width are irrelevant to
the properties of the TSP instance. Adding these parameters increases the
input data’s complexity and the effort required for parameter tuning.

3. Potentially lose problem-relevant information: In the image genera-
tion procedure, the TSP instance is divided into multiple grids, with the
value for each grid representing the number of cities that fall into it [2, 11].
After gridding, portions of the instance’s local structure will be lost. In ad-



Algorithm Selection for TSP with Simplified PointNet++ 3

dition, [2] sets a maximum number for the value of grids, leading to more
information distortion.

4. Hard to generalize to other routing problems: Researchers can ap-
ply gridding methods to convert TSP instances to images since cities are in
2D Euclidean space. Consider selecting algorithms for TSP variants, such as
Asymmetric Traveling Salesman Problem (ATSP) and Capacitated Vehicle
Routing Problem (VRP). In these cases, generating images to represent in-
stances will be challenging, and a graph with assigned node/edge features
may be a better representation form.

To remedy the above issues, in this work, we propose a Graph Neural Net-
work (GNN) named Simplified PointNet++ to select TSP algorithms. The main
novelties of this work are as follows:

• We are the first to regard TSP instances as point clouds and successfully
apply GNN in the TSP algorithm selection field.

• The proposed model merely takes the coordinates of cities as inputs, and
there is no need to design and generate intermediate representations for
TSP instances.

• The adopted point cloud representation methodology has few parameter set-
tings and can retain complete information about the original TSP instance.

• The proposed model can capture local features with multiple scales by hier-
archically aggregating information from the neighborhood points. Its robust
performance is demonstrated on two public TSP datasets.

• We show that the proposed model can easily generalize to other routing
problems by adding node features or modifying distance metrics.

The rest of this paper is organized as follows: Section 2 introduces the re-
search background and related works. Section 3 presents the proposed Simplified
PointNet++. Section 4 shows the proposed model’s experimental results on two
public datasets. At last, Section 5 gives conclusions and our future work plans.

2 Related Work

Algorithm selection for optimization problems No free lunch (NFL) theo-
rem states that no algorithm can outperform others on all optimization problems.
Researchers propose and investigate algorithm selection problems to improve
overall solving performance [13]. Most researchers focus on designing features
for problem instances and solving the algorithm selection problem by traditional
feature-based machine learning models. The collection of features for classical
optimization problems like Satisfiability Problem [14], AI planning [15], Knap-
sack Problem [16], TSP [7–9], and VRP [17, 18] have been well designed. These
features are restricted to specific problems and usually need large efforts to gen-
erate.

Deep learning has been shown to perform various classification/regression
tasks effectively. If we apply deep learning models to capture instance features



4 Y. Song et al.

for algorithm selection automatically, the tedious feature design work can be
eliminated. In addition to the algorithm selection models using CNN for TSP
mentioned above [2, 10, 11], researchers have proposed a few feature-free algo-
rithm selection models for other optimization problems. By generating images
from the text documents for SAT problem instances, CNN can be applied to
selecting algorithms [19]. In [20], researchers sample landscape information from
instances and transform it into images, then apply CNN to select algorithms
for Black-Box Optimization Benchmarking (BBOB) function instances. In [21],
researchers treat online 1D Bin-Packing Problem instances as sequence data
and apply Long Short-Term Memory (LSTM) to predict heuristic algorithms’
performance. In the feature-free algorithm selection field, instances are usually
converted to images or sequences, and graph representations are seldom used.

GNN for TSP The TSP instance can be naturally expressed by a graph G =
(V,E), where V = {v1, v2, ..., vn} is a group of cities, and E = {⟨vi, vj⟩ : vi, vj ∈
V } is a set of routes between cities. Applying GNN in TSP-related problems to
learn graph embedding is a reasonable choice.

GNN for TSP solving: GNN has been successfully applied in learning-based TSP
algorithms, either in the manner of reinforcement learning or supervised learn-
ing [22]. In reinforcement learning methods, researchers use graph embedding
networks such as structure2vec [23] and Graph Pointer Networks (GPN) [24]
to represent the current policy and apply Deep Q-Learning (DQN) to update
it. To tackle larger graphs, [25] introduces a two-stage learning procedure that
firstly trains a Graph Convolutional Network (GCN) [26] to predict node quali-
ties and prune some of them before taking the next action. In supervised learning
methods, GNN models are commonly used as the Encoder tool [27, 28] in the
upgraded version of Pointer Network [29], a sequence-to-sequence architecture.
Additionally, some hybrid models combine GNN with heuristic algorithms to im-
prove searching efficiency. [1] applies GCN to predict the probabilities of edges
occurring on the optima tour and uses Beam Searching to obtain a feasible so-
lution. [30] utilizes Graph Attention Network (GAT) [31] to estimate the regret
of including a certain edge in the solution, and then Guided Local Search (GLS)
explores solutions according to these predictions.

GNN for TSP searching space reduction: Searching space reduction for TSP
instances is another GNN-related research task, and it can be viewed as an edge
classification problem. Suppose a learned model can predict which edges in the
TSP instance graph are likely to be included in the optimal solution. In that case,
we can reduce the searching space and improve computational efficiency in the
following searching procedure [32]. In [33], authors have designed a benchmark
TSP dataset for edge classification. Here a TSP instance is represented as a
K-Nearest Neighbor graph, where node features are node coordinates and edge
features are Euclidean distances between two nodes. The authors test several
classical GNN models and find Residual Gated Graph Convnets [34] outperform



Algorithm Selection for TSP with Simplified PointNet++ 5

others. Many researchers use this benchmark dataset to assess the proposed
GNN architectures [35–37].

GNN for TSP algorithm selection: To the best of our knowledge, no GNN mod-
els have been applied in TSP algorithm selection. However, representation learn-
ing on graphs is extensively applied in solving TSP and reducing search space
for TSP, as was described above. Researchers have investigated utilizing both
CNN and GCN to select TSP algorithms and discovered that CNN performs
better [11]. The authors analyze the drawbacks of GCN, including the lack of
relevant node features, the over-smoothing problem [38], and high time com-
plexity. Since GNN models have various architectures, it is possible to solve the
TSP algorithm selection problem by adopting a suitable GNN that considers the
nature of instances, which is the purpose of our work.

Point Clouds Classification The point cloud is a type of practical 3D geomet-
ric data. Identifying point clouds has attracted much attention in recent years.
It is a crucial object recognition task with multiple real-world applications, such
as remote sensing, autonomous driving, and robotics [39, 40]. Unlike image data
made up of regular grids, the point cloud is unstructured data as the distance
between neighboring points is not fixed. As a result, we can not directly apply
the classic convolutional operations on point clouds to aggregate local informa-
tion. Converting point clouds to fixed-size voxel grids is the traditional way to
address this issue [41, 42]. Another strategy is to project point clouds into a
group of 2D images from multiple angles and then apply 2D CNN algorithms
to the resulting images [43–45]. Due to the manipulation of the original point
cloud data and the inefficiency of the new representation, these two approaches
have potential drawbacks [40].

PointNet [46] is the first deep learning model that can directly consume raw
point cloud data for 3D object classification and part/scene semantic segmen-
tation. The authors emphasize that point clouds have the following three main
properties. Firstly, unlike pixel arrays in an image, a point cloud is a set of
unordered points whose permutation is not fixed. Secondly, the classification re-
sults will remain unaltered if a point cloud experiences specific transformations,
such as rotation and translation. At last, points are not isolated from one an-
other, and neighboring points constitute a meaningful subset [46]. PointNet is
designed to take these three properties into account. Specifically, PointNet uses a
shared Multi-Layer Perceptron (MLP) to map each point to higher-dimensional
space, and a symmetric operator, i.e., Maxpooling, is applied to aggregate the
global feature vector of all the points. Additionally, a geometric transformer
called T-Net provides pose normalization and learn transformation invariance.
The fundamental disadvantage of PointNet is the absence of local context ac-
quisition [47]. Thus a type of GNN, PointNet++, is proposed to achieve hierar-
chical local feature learning by recursively applying PointNet to neighborhood
points [47].



6 Y. Song et al.

The TSP instance comprises an array of city coordinates and can be consid-
ered as 2D point cloud data. The TSP instance has the following three properties,
similar to the point cloud:

- Permutation Invariance: cities in the TSP instance are unordered. The learn-
ing model has to be invariant to the permutations of the cities.

- Transformation Invariance: the characteristics or hardness of the TSP in-
stance will be unchanged if we rotate/translate cities’ positions. The learned
representation of the cities should be invariant to these transformations.

- Point Interactions: the cities are in the Euclidean distance metric space. It is
meaningful to consider the interactions among neighboring cities. Thus the
learning model should be able to represent local structures.

In conclusion, handling TSP instances as point clouds may be preferable
rather than converting them to images. And it is reasonable to apply an archi-
tecture that conforms to the specific properties of the TSP instance.

3 Simplified PointNet++ for TSP algorithm selection

Problem Statement The TSP algorithm selection problem can be defined
as follows: given a TSP instance set I = {I1, I2, ..., Il}, a TSP algorithm set
A = {A1, A2, ..., Am}, and a certain algorithm performance metric, the goal
is to identify a per-instance mapping from I to A that maximizes its overall
performance on I based on the given metric. As discussed in previous sections,
the TSP instances can be represented by features or images, and we can apply
a supervised learning model such as SVM or CNN to learn this mapping.

In this work, we treat a TSP instance Ii as a 2D point cloud {pj |, j =
1, 2, ..., n}, where each point pj is a vector of its (xj , yj) coordinate. Thus se-
lecting TSP algorithms can be viewed as a point cloud classification/regression
task. We apply a GNN model called Simplified PointNet++, which can directly
take TSP instances as inputs to accomplish this task. Next, we will describe the
architecture of this model in detail.

Simplified PointNet++ PointNet++ iteratively processes 3D point clouds uti-
lizing a scheme comprised of three fundamental layers: sampling, grouping, and
neighborhood aggregation [47]. The original PointNet++ can be simplified as the
inputs in our task are 2D point clouds. We eliminate the sampling layer to retain
more instance information. Thus our PointNet++ scheme, as shown in Fig. 1, has
two main layers:

- Grouping Layer: creates a local graph by connecting neighboring points. The
original PointNet++ chooses the ball query method to define the neighbor-
hood for the query point. Here we employ the KNN method, which is often
applied in creating TSP instance graphs [33].



Algorithm Selection for TSP with Simplified PointNet++ 7

Fig. 1. Illustration of PointNet++ scheme with the neighborhood defined by the ball
query method.

- Neighborhood Aggregation Layer: aggregates local features from the con-
structed neighborhood for each point. The neighborhood aggregation and
message-passing formulation is shown as follows:

h
(ℓ+1)
i = max

j∈N (i)
MLP

(
h
(ℓ)
j ,pj − pi

)
(1)

where h
(ℓ)
i denotes the hidden features of point i in layer ℓ, N (i) denotes

the constructed neighborhood for point i, and pi denotes the coordinate of
point i.

The Simplified PointNet++ neural architecture is shown in Fig. 2, where we
stack two PointNet++ schemes sequentially to capture local context at different
scales. The input of the first PointNet++ scheme is an N × 2 matrix, where
N is the number of cities in the TSP instance. The output matrix size of the
Grouping Layer is N × K × 2, and K is the number of neighbors in the KNN
method we set. The Neighborhood Aggregation Layer outputs a N ×C matrix,
where C is the dimension of the feature representing the local context. Then a
global Max-pooling is applied across the node dimension to obtain a 1×C array.
At last, we have a linear layer to map the learned features to the class label. In
our algorithm selection problem, the classes are different algorithms. Both two
PointNet++ schemes contain a group normalization layer, and a dropout layer is
added to improve regularization before the last linear layer.



8 Y. Song et al.

T
S

P
 I

n
st

an
ce

: 
N
×
2

P
o

in
tN

et
+

+

P
o

in
tN

et
+

+

G
lo

b
al

 

M
ax

-p
o

o
li

n
g

D
ro

p
o

u
t:

 2
5

%

L
in

ea
r

N×C N×C 1×C 1×C 1×n_classOutput size:

Fig. 2. The Simplified PointNet++ neural architecture

4 Experiments

4.1 Dataset

We evaluate the proposed Simplified PointNet++ on two public TSP algorithm
selection datasets. The first dataset is generated to assess the Instance Space
Analysis (ISA) framework [4], and the second is for evaluating the proposed
CNN-based selector [10]. The main difference between the two datasets is the
size of the instances. The TSP instances in the first dataset all contain 100 cities,
while instances in the second dataset contain 1000 cities. Applying the proposed
model to two different datasets helps us examine its adaptability and compare
it with other models. The following part is a detailed description of the two
datasets.

TSP-ISA dataset : includes 950 TSP instances with 100 cities, and it is di-
vided equally into seven groups based on instance characteristics: RANDOM,
CLKeasy, CLKhard, LKCCeasy, LKCChard, easyCLK-hardKLCC and hardCLK-
easyLKCC. Here Chained Lin-Kernighan (CLK) and Lin-Kernighan with Clus-
ter Compensation (KLCC) are famous heuristic algorithms for solving TSP. The
aim is to predict whether CLK or KLCC is better for each instance, and we can
view it as a binary classification task. According to the mean effort of the two
algorithms, KLCC is the Single-Best-Solver. As the dataset is not balanced,
choosing KLCC for all instances can achieve 80% accuracy. [4] designs 11 fea-
tures to represent TSP instances and trains a multilayered feedforward neural
network to be the selector.

TSP-CNN dataset : includes 1000 TSP instances with 1000 cities. There
are two algorithms to choose from Edge-Assembly-Crossover (EAX) and Lin-
Kernigham Heuristic (LKH), and the PAR10 score serves as the performance
matrix. It is a well-balanced dataset, and choosing Single-Best-Solver (EAX) for
all instances can only achieve 49% accuracy [10].



Algorithm Selection for TSP with Simplified PointNet++ 9

4.2 Baseline model

In addition to comparing with the model proposed in other articles, we create a
baseline model, i.e., a GCN-based TSP selector. We can recognize which repre-
sentation form and corresponding learning model performs better by comparing
GCN with Simplified PointNet++.

To apply GCN to select algorithms for TSP, firstly, we create a TSP graph
dataset. We keep in line with the graph setting in [33] for TSP edge classification
and use KNN graphs to represent TSP instances, here K = 0.2 × N , N is the
number of cities in the TSP instances. We set the node feature to be node
coordinates, and it is a N × 2 matrix. Let the edge feature be the distance
between two linked cities, and the matrix size is [0.2 × N2, 1]. We apply the
standard GCN model to classify the instance graphs. The GCN message-passing
formulation is:

h
(ℓ+1)
i = σ

∑
j∈N (v)∪{i}

ej,i√
d̂j d̂i

h
(ℓ)
j (2)

where ej,i denotes the edge weight from source node j to target node i, d̂i denotes
the node degree of node i. We keep the neural architecture of GCN the same as
Simplified PointNet++ by just replacing PointNet++ schemes with GCN layers.

4.3 Result and analysis

For a fair comparison with baseline models, we process the datasets in the same
way as [4] and [10]. For the TSP-ISA dataset, we randomly split the entire
dataset into training and test datasets, where 80% instances for training and
the remaining 20% instances for the test. We apply exactly the same 10-fold
cross-validation on the TSP-CNN dataset as the data grouping information was
released in [10]. We set the KNN method parameter K to be 10, the hidden
channel dimension for the GCN layer, and the Simplified PointNet++ scheme to
be 32. We use an Adam optimizer with a 0.001 learning rate to reduce Cross
Entropy loss and train 100 epochs for each model.

The average classification accuracy of 10 runs on the TSP-ISA dataset is
listed in Table 1. We can see that the proposed Simplified PointNet++ can out-
perform the traditional feature-based machine learning model. As the proposed
method does not require any domain knowledge of TSP and has high prediction
accuracy, it can be a promising approach in this field. Same with [10], we record
the best result of the trained GCN and Simplified PointNet++ on TSP-CNN
dataset in Table 2. We can find CNN-based model performs slightly better than
Simplified PointNet++ in terms of overall performance. We calculate the T-test
for the means of two performance lists and find they do not differ significantly.

Table 3 gives a summary of properties of CNN-based method and Simplified
PointNet++. Though the proposed Simplified PointNet++ does not outperform
CNN in prediction accuracy, it is still a competitive method. Firstly, CNN takes
multiple images as inputs, i.e., Points image, MST image, and KNN image.



10 Y. Song et al.

Generating these images may be time-consuming, and it is unclear which image
can better represent TSP instances. Contrary to CNN, Simplified PointNet++
directly takes the 2D coordinate matrix of cities as inputs, and we do not need
to prepare intermediate representations like images. Secondly, when generating
images for CNN, several problem-irrelevant parameters must be set, such as
image size, dot size, and line width in MST and KNN images. Tuning these
parameters can be a heavy workload, Although theoretically, these parameters
should not affect the learned mapping from instances to algorithms. While in
Simplified PointNet++, the TSP instances are treated as point clouds, and there
are no parameters to be designed or adjusted. Besides, when setting the image
resolution in the CNN-based method, we should consider the city number in the
TSP instance. Otherwise, the representation ability of the image is inadequate,
and problem instance information is lost.

At last, generating images for TSP instances and applying CNN to select
algorithms is not very difficult because cities in TSP are homogeneous and in 2D
Euclidean space. If we look into some complex routing problems, we will find that
applying the CNN-based method is challenging. For VRP algorithm selection,
it is hard to differentiate the depot and customer with image representations.
While in Simplified PointNet++, we can simply add the point features to tell
them apart. Considering the routing problem in Non-Euclidean space such as
ATSP, drawing the problem instance on a 2D plane is nearly impossible. While
Simplified PointNet++ can naturally recognize the neighborhood in ATSP, we
also can modify the message-passing formulation in Simplified PointNet++ to
aggregate more valuable edge features.

Table 1. Comparison of baselines with our models on the TSP-ISA dataset.

Models Input data Accuracy
ANN [4] Man-designed 11 features 97.00%

GCN KNN graphs 96.37%
Simplified PointNet++ Point clouds 98.42%



Algorithm Selection for TSP with Simplified PointNet++ 11

Table 2. Comparison of baselines with our best models on the TSP-CNN dataset and
cross all ten folds.

Fold Accuracy
CNN [10] GCN Simplified PointNet++

1 0.78 0.68 0.73
2 0.67 0.63 0.65
3 0.80 0.74 0.74
4 0.76 0.68 0.68
5 0.57 0.60 0.68
6 0.71 0.59 0.63
7 0.70 0.67 0.72
8 0.77 0.69 0.69
9 0.58 0.63 0.62
10 0.71 0.65 0.76

Average 70.50% 65.60% 69.00%

Table 3. Properties comparison between CNN-based method and Simplified Point-
Net++.

Properties CNN-based method [10] Simplified PointNet++

Intermediate representations
preparation

Points image
MST image
KNN image

None

Problem-irrelevant
parameters

Image size
Dot size

Line width
None

Data Augmentation Random rotation
Random flipping None

Problem-relevant
information loss Affected by resolution None

Distinguish
different points Hard Easy to add

node features
To Non-Euclidean

Metric Space Hard Easy [47]

Accuracy 70.50% 69.00%

5 Conclusion

In this work, we proposed a novel GNN, i.e., Simplified PointNet++, to select
algorithms for TSP. This model handles TSP instances as 2D point clouds and
only takes cities’ coordinates as inputs. Thus no intermediate representations for
problem instances, such as features or images, need to be designed and gener-
ated before model training. In contrast to converting TSP instances to images,
the point cloud representation is more natural and elegant. It neither introduces
problem-irrelevant parameters nor loses problem-relevant information. The pro-
posed method is promising as it is easy to generalize to other routing problems.



12 Y. Song et al.

For example, we can distinguish points in the problem instances by adding node
features. Furthermore, we can modify the model to learn the representation for
problem instances in Non-Euclidean space. We think this work can be a powerful
starting point for selecting algorithms for combinatorial optimization problems
defined on graphs. In the future, we will apply similar GNN architectures to
more complex routing problems like ASTP and VRP.

Acknowledgements Ya Song would like to thank the China Scholarship Coun-
cil (CSC) for the financial support of this research.

References

1. Joshi, C., Laurent, T. & Bresson, X. An efficient graph convolutional network tech-
nique for the travelling salesman problem. ArXiv Preprint ArXiv:1906.01227. (2019)

2. Huerta, I., Neira, D., Ortega, D., Varas, V., Godoy, J. & Asın-Achá, R. Improving
the state-of-the-art in the Traveling Salesman Problem: An Anytime Automatic
Algorithm Selection. Expert Systems With Applications. 187 pp. 115948 (2022)

3. Rice, J. The algorithm selection problem. Advances In Computers. 15 pp. 65-118
(1976)

4. Smith-Miles, K. & Hemert, J. Discovering the suitability of optimisation algorithms
by learning from evolved instances. Annals Of Mathematics And Artificial Intelli-
gence. 61, 87-104 (2011)

5. Smith-Miles, K., Baatar, D., Wreford, B. & Lewis, R. Towards objective measures
of algorithm performance across instance space. Computers Operations Research.
45 pp. 12-24 (2014)

6. Kotthoff, L. Algorithm selection for combinatorial search problems: A survey. Data
Mining And Constraint Programming. pp. 149-190 (2016)

7. Hutter, F., Xu, L., Hoos, H. & Leyton-Brown, K. Algorithm runtime prediction:
Methods evaluation. Artificial Intelligence. 206 pp. 79-111 (2014)

8. Bossek, J. Salesperson: computation of instance features and R interface to the
state-of-the-art exact and inexact algorithms for the traveling salesperson problem
(2017).

9. Pihera, J. & Musliu, N. Application of machine learning to algorithm selection for
TSP. 2014 IEEE 26th International Conference On Tools With Artificial Intelli-
gence. pp. 47-54 (2014)

10. Seiler, M., Pohl, J., Bossek, J., Kerschke, P. & Trautmann, H. Deep learning as a
competitive feature-free approach for automated algorithm selection on the traveling
salesperson problem. International Conference On Parallel Problem Solving From
Nature. pp. 48-64 (2020)

11. Zhao, K., Liu, S., Yu, J. & Rong, Y. Towards Feature-free TSP Solver Selection: A
Deep Learning Approach. 2021 International Joint Conference On Neural Networks
(IJCNN). pp. 1-8 (2021)

12. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition.
Proceedings Of The IEEE Conference On Computer Vision And Pattern Recogni-
tion. pp. 770-778 (2016)

13. Kerschke, P., Hoos, H., Neumann, F. & Trautmann, H. Automated algorithm se-
lection: Survey and perspectives. Evolutionary Computation. 27, 3-45 (2019)



Algorithm Selection for TSP with Simplified PointNet++ 13

14. Hoos, H., Lindauer, M. & Schaub, T. claspfolio 2: Advances in algorithm selection
for answer set programming. Theory And Practice Of Logic Programming. 14, 569-
585 (2014)

15. Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H. & Leyton-Brown, K.
Improved features for runtime prediction of domain-independent planners. Twenty-
Fourth International Conference On Automated Planning And Scheduling. (2014)

16. Huerta, I., Neira, D., Ortega, D., Varas, V., Godoy, J. & Asın-Achá, R. Anytime
automatic algorithm selection for knapsack. Expert Systems With Applications. 158
pp. 113613 (2020)

17. Mayer, T., Uhlig, T. & Rose, O. Simulation-based autonomous algorithm selection
for dynamic vehicle routing problems with the help of supervised learning methods.
2018 Winter Simulation Conference (WSC). pp. 3001-3012 (2018)

18. Rasku, J. Toward Automatic Customization of Vehicle Routing Systems. JYU
Dissertations. (2019)

19. Loreggia, A., Malitsky, Y., Samulowitz, H. & Saraswat, V. Deep learning for algo-
rithm portfolios. Thirtieth AAAI Conference On Artificial Intelligence. (2016)

20. He, Y. & Yuen, S. Black box algorithm selection by convolutional neural network.
International Conference On Machine Learning, Optimization, And Data Science.
pp. 264-280 (2020)

21. Alissa, M., Sim, K. & Hart, E. Automated Algorithm Selection: from Feature-Based
to Feature-Free Approaches. ArXiv Preprint ArXiv:2203.13392. (2022)

22. Vesselinova, N., Steinert, R., Perez-Ramirez, D. & Boman, M. Learning combi-
natorial optimization on graphs: A survey with applications to networking. IEEE
Access. 8 pp. 120388-120416 (2020)

23. Khalil, E., Dai, H., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial
optimization algorithms over graphs. Advances In Neural Information Processing
Systems. 30 (2017)

24. Ma, Q., Ge, S., He, D., Thaker, D. & Drori, I. Combinatorial optimization by
graph pointer networks and hierarchical reinforcement learning. ArXiv Preprint
ArXiv:1911.04936. (2019)

25. Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu, S. & Singh, A. Learn-
ing heuristics over large graphs via deep reinforcement learning. ArXiv Preprint
ArXiv:1903.03332. (2019)

26. Kipf, T. & Welling, M. Semi-supervised classification with graph convolutional
networks. ArXiv Preprint ArXiv:1609.02907. (2016)

27. Nowak, A. & Bruna, J. Divide and conquer networks. ArXiv Preprint
ArXiv:1611.02401. (2016)

28. Sultana, N., Chan, J., Sarwar, T. & Qin, A. Learning to optimise general tsp
instances. International Journal Of Machine Learning And Cybernetics. pp. 1-16
(2022)

29. Vinyals, O., Fortunato, M. & Jaitly, N. Pointer networks. Advances In Neural
Information Processing Systems. 28 (2015)

30. Hudson, B., Li, Q., Malencia, M. & Prorok, A. Graph Neural Network Guided Local
Search for the Traveling Salesperson Problem. ArXiv Preprint ArXiv:2110.05291.
(2021)

31. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. & Bengio, Y. Graph
attention networks. ArXiv Preprint ArXiv:1710.10903. (2017)

32. Fitzpatrick, J., Ajwani, D. & Carroll, P. Learning to sparsify travelling salesman
problem instances. International Conference On Integration Of Constraint Program-
ming, Artificial Intelligence, And Operations Research. pp. 410-426 (2021)



14 Y. Song et al.

33. Dwivedi, V., Joshi, C., Laurent, T., Bengio, Y. & Bresson, X. Benchmarking graph
neural networks. ArXiv Preprint ArXiv:2003.00982. (2020)

34. Bresson, X. & Laurent, T. Residual gated graph convnets. ArXiv Preprint
ArXiv:1711.07553. (2017)

35. Zhang, H., Xu, M., Zhang, G. & Niwa, K. SSFG: Stochastically scaling features
and gradients for regularizing graph convolutional networks. IEEE Transactions On
Neural Networks And Learning Systems. (2022)

36. Chen, Y., Tang, X., Qi, X., Li, C. & Xiao, R. Learning graph normalization for
graph neural networks. Neurocomputing. 493 pp. 613-625 (2022)

37. Chen, C., Tao, C. & Wong, N. Litegt: Efficient and lightweight graph transformers.
Proceedings Of The 30th ACM International Conference On Information Knowledge
Management. pp. 161-170 (2021)

38. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J. & Sun, X. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. Pro-
ceedings Of The AAAI Conference On Artificial Intelligence. 34, 3438-3445 (2020)

39. Lin, C., Kong, C. & Lucey, S. Learning efficient point cloud generation for dense
3d object reconstruction. Proceedings Of The AAAI Conference On Artificial Intel-
ligence. 32 (2018)

40. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. & Bennamoun, M. Deep learning for
3d point clouds: A survey. IEEE Transactions On Pattern Analysis And Machine
Intelligence. 43, 4338-4364 (2020)

41. Ghadai, S., Lee, X., Balu, A., Sarkar, S. & Krishnamurthy, A. Multi-
resolution 3D convolutional neural networks for object recognition. ArXiv Preprint
ArXiv:1805.12254. 4 (2018)

42. Wang, C., Cheng, M., Sohel, F., Bennamoun, M. & Li, J. NormalNet: A voxel-based
CNN for 3D object classification and retrieval. Neurocomputing. 323 pp. 139-147
(2019)

43. Su, H., Maji, S., Kalogerakis, E. & Learned-Miller, E. Multi-view convolutional
neural networks for 3d shape recognition. Proceedings Of The IEEE International
Conference On Computer Vision. pp. 945-953 (2015)

44. Bai, S., Bai, X., Zhou, Z., Zhang, Z. & Jan Latecki, L. Gift: A real-time and scalable
3d shape search engine. Proceedings Of The IEEE Conference On Computer Vision
And Pattern Recognition. pp. 5023-5032 (2016)

45. Kalogerakis, E., Averkiou, M., Maji, S. & Chaudhuri, S. 3D shape segmentation
with projective convolutional networks. Proceedings Of The IEEE Conference On
Computer Vision And Pattern Recognition. pp. 3779-3788 (2017)

46. Qi, C., Su, H., Mo, K. & Guibas, L. Pointnet: Deep learning on point sets for 3d
classification and segmentation. Proceedings Of The IEEE Conference On Computer
Vision And Pattern Recognition. pp. 652-660 (2017)

47. Qi, C., Yi, L., Su, H. & Guibas, L. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. Advances In Neural Information Processing Systems.
30 (2017)


