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Shapley values have gained significant popularity as an explanation method
for black-box machine learning models in recent years [11, 7, 6]. However, es-
timating Shapley values in practice is computationally very expensive. In this
work, we exploit properties of the functional ANOVA decomposition [10] to pro-
duce a model-agnostic technique for approximating Shapley values with a very
low amortized cost: if many predictions need to be explained, the cost per expla-
nation decreases significantly. We do this by constructing a functional decom-
position (ANOVA model), and training it to imitate the black box model being
explained. Once the ANOVA model is trained, Shapley values can be estimated
orders of magnitude faster than using existing model-agnostic approaches. We
empirically show that the cost of training the surrogate model is compensated
by the speedup in inference, even for relatively small amounts of explanations.

We denote the black-box model as a function f : X → R, where X ⊆ Rd. We
abbreviate the set {1, . . . , d} to [d], and for a subset u ⊆ [d] we write −u := [d]\u.
If x,y ∈ X and u ⊆ [d], then z := xu : y−u is defined as zj := xj for j ∈ u, and
zj = yj for j /∈ u.

Shapley values [11] are a way of fairly distributing a payout among partici-
pating players. Let val(u) ∈ R be the payout of a subset of players u ⊆ [d], with
val(∅) = 0. The Shapley value for player j ∈ [d] is then defined as:

φj :=
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1
(val(u ∪ {j})− val(u))

The functional ANOVA is a decomposition of the form

f(x) =
∑
u⊆[d]

fu(x)

where each function fu depends only on the variables xj , j ∈ u [3]. Although the
original ANOVA decomposition assumes that variables are independent and uni-
formly distributed, this assumption is not critical. We replace the uniform distri-
bution with a general marginal distribution for each variable: xj ∼ Xj ,∀j ∈ [d].
Note that this approach still assumes independence between variables. We name
this variant of the ANOVA decomposition the Partial Dependence Decomposi-
tion.

[9] shows that a specific implementation of Shapley values called Shapley Ef-
fects [12] can be estimated efficiently if an ANOVA decomposition of the black
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box function is given. The proof from [9] can be extended to more general im-
plementations of Shapley values and the ANOVA decomposition (including the
Partial Dependence decomposition). If we define the value function for an ex-
planation for an input point x as follows:

valx(u) := Ez∼D[f(xu : z−u)]− Ez∼D[f(z)]

then the corresponding Shapley values can be estimated using the following
equation:

φxj =
∑
u⊆[d]
j∈u

fu(x)

|u|
(1)

Our proposed method works by first training a Partial Dependence Decompo-
sition, from which we then compute Shapley values using equation 1. As the
number of components fu that need to be estimated grows exponentially with
d, we only estimate the terms fu for which |u| < k, for some k ∈ N.

Table 1. Runtime (in seconds) for PDD-SHAP vs. subset sampling [13], antithetic
sampling [8] and KernelSHAP [6] for 1000 explanations. The rightmost columns corre-
spond to PDD-SHAP for varying values of k. Results are indicated in bold where the
sum of training and inference time for PDD-SHAP is lower than the runtime of all 3
alternatives.

Dataset Subset
sampling

Antithetic
sampling

Kernel-
SHAP

PDD-SHAP (train time + inference time)
k = 1 k = 2 k = 3 k = 4

Adult 103.90 67.44 1060.78 0.85+0.01 6.15+0.02 27.33+0.10 84.29+0.28
Credit 112.16 73.09 1125.11 1.31+0.01 12.42+0.04 77.96+0.22 370.31+1.06
Superconduct 308.30 97.42 2141.26 2.98+0.01 120.09+0.18 N/A N/A
Housing 68.05 89.25 239.31 0.43+0.01 1.64+0.01 4.14+0.02 8.03+0.03
Abalone 108.66 230.72 169.25 1.08+0.01 4.63+0.02 11.61+0.03 18.80+0.05

We tested our approach on the adult [5], superconduct [2], UCI German credit
[1], California housing [4] and UCI Abalone datasets [1], using a background
sample of 100 instances, and using a regression tree to model each fu

1. To
evaluate our technique, we train a Gradient Boosting model on each dataset
and compare the explanations given by PDD-SHAP for 1000 test samples to 3
existing model-agnostic approaches for computing Shapley values: feature subset
sampling [13], antithetic sampling [8] and KernelSHAP [6]. These approaches are
all implemented in the shap package2.

Table 1 shows the runtime required for each method to generate Shapley
values on 1000 instances. We see that the inference time for PDD-SHAP is
orders of magnitude lower than the runtime for the existing methods. In many
cases even the runtime for training the surrogate model and inference combined
is still significantly lower than the runtime for the existing methods.
1 Implementation available at https://github.com/arnegevaert/pdp-shapley
2 https://github.com/slundberg/shap
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