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1 Introduction

Sample efficiency remains an open challenge in RL and prevents adoption in many
real-world settings [5,8]. Recently, approaches that combine low-level RL with high-
level symbolic instructions have become popular as this plays both to their strengths.
RL is used to learn primitive actions in ground states whereas symbolic approaches are
used to reason over subgoals, groups of states and multi-timestep actions. Existing ap-
proaches, however, typically require instructions to fully define the task at hand, i.e. that
high returns are always obtained if the instructions are followed. Such rich instructions,
however, may be hard to attain in practice.

We target a setting in which an agent is to optimize an environment reward with the
help of underspecified instructions. These instructions convey some information about
solving the task, but they do not not guarantee a high environment reward. In [9], we
propose and evaluate a framework for sample-efficient RL with these instructions.

Our framework provides interleaving, looping and partial ordering of multi-timestep
actions know as options, in contrast to some existing extensions to options [16,1,4]. It
abstracts over actions, in contrast to some work on RL and transition systems [14,10,11].
Other work assumes a complete and possibly hard to obtain task specification, and/or
do not use named options and are less reusable and interpretable [15,6,12,2,19,20,3,7].

2 The Option Machine Framework

We address problems formalized as Markov decision processes (MDPs) with the option
framework [17,18]. This framework introduces a temporal abstraction over actions, in
which the agent selects a ‘primitive’ action or ‘multi-step’ action at each time step.
We combine options with transition systems known as Finite State Transducers (FSTs).
FSTs are transition systems that map strings of inputs to strings of output. An FST can
be specified in a temporal logic and then converted to a FST with existing tools [13].

Our approach uses high-level instructions composed of options and events. Events
are formalized as a set of atomic propositions AP I . We assume that some function
L : S → 2AP I

for detecting these events in MDP states is available as a handcrafted
or pretrained component. Options are actions that take multiple time steps and can be
reused across tasks. In our framework, all options are named, i.e. associated with an
atomic proposition ap ∈ APO. The instructions in this work define which options are
permissible based on the detected events.
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Fig. 1: Rewards in the single- and multi-task settings on fully and underspecified environments.

Option Machines

Environment Sketch Fixed Greedy Sticky

Fully specified 0.03 0.90 0.74 0.73
Underspecified 0.09 0.60 N/A N/A

Table 1: Zero-shot results on 1K test episodes.

In particular, at each time point t with events lt := L(st), the FST transitions to a
new state qt based on its current state qt−1 and events lt. Upon this transition, the FST
outputs a subset APO

t ⊆ APO of all options. This subset is interpreted as the set of
permissible options at time point t. The agent then selects one of these and executes its
policy to select an atomic action. We compare ways of selecting from the permissible
options and two of these propagate learned knowledge to the symbolic layer. The two-
level control structure generates trajectories by executing different policies at different
time steps and introduces the problem of properly attributing subsequences to options
during learning. We use FST state information to address this problem in the proposed
learning algorithm by assigning the entire subsequence generated while visiting a single
FST state to the latest active policy for any subsequence in which a particular FST state
was visited. Additionally, we use FST state information to define a shaping reward
similar to the Reward Machines (RM) approach [3].

3 Evaluation and Discussion

We evaluate the proposed approach in two benchmark environments that have one key
difference: every trajectory that satisfies the specification yields high return in the ‘fully
specified’ environment whereas in the ‘underspecified’ environment only some trajec-
tories do so. We evaluate the approach in single-task, multi-task and zero-shot settings
in these environments. Our approach significantly outperforms policy sketches [1] in all
settings and RMs in the multi-task setting, see Figure 1 and Table 1. Shaping rewards
were only supplied in the fully specified environment as we found that shaping rewards
should not be used in the underspecified case. These results indicate that with the OM
framework, agents are capable of learning named long-term behaviors based on task
specifications and environment reward only. This enables reuse within and across tasks,
facilitates zero-shot generalisation if solutions to subtasks are known and enables the
inspection of the agents’ decision-making process at an interpretable level of abstrac-
tion.
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