
Structured Exploration Through Instruction
Enhancement for Object Navigation

Matthias Hutsebaut-Buysse[0000−0001−6091−294X],
Tom De Schepper[0000−0002−2969−3133],
Kevin Mets[0000−0002−4812−4841], and
Steven Latré[0000−0003−0351−1714]

University of Antwerp - imec
IDLab - Department of Computer Science
{firstname.lastname}@uantwerpen.be

Abstract. Finding an object of a specific class in an unseen environment
remains an unsolved navigation problem. Hence, we propose a hierarchi-
cal learning-based method for object navigation. The top-level is capable
of high-level planning, and building a memory on a floorplan-level (e.g.,
which room makes the most sense for the agent to visit next, where has
the agent already been?). While the lower-level is tasked with efficiently
navigating between rooms and looking for objects in them. Instructions
can be provided to the agent using a simple synthetic language. The top-
level intelligently enhances the instructions in order to make the overall
task more tractable. Language grounding, mapping instructions to visual
observations, is performed by utilizing an additional separate supervised
trained goal assessment module. We demonstrate the effectiveness of our
method on a dynamic configurable domestic environment.

Keywords: Hierarchical Reinforcement Learning · Object Navigation ·

Embodied AI

1 Introduction

Finding objects in unseen environments is a hard navigation task. In order to be
successful, an agent needs to be capable of mastering a number of skills. First, the
agent needs to be capable to explore the environment in a structured manner:
it should figure out the layout of the previously unseen environment, keep a
memory of past actions, and remember visited regions. Second, the agent needs
to be capable to understand the instruction: map an instruction to an actual
visual representation. Third, the agent needs to be capable to make decisions
on multiple abstraction levels: navigate to the other side of the building versus
navigating through a doorway.

These problems have been studied individually intensively in various settings
[19, 20, 17, 4]. However, constructing an agent capable of simultaneously perform-
ing these feats, remains an open challenge. In this paper we study how we can



2 M. Hutsebaut-Buysse et al.

build an agent capable of simultaneously handling long-term planning through
abstraction, low-level locomotion and basic language grounding.

Current navigation solutions typically utilize a sense-plan-act approach, in
which different modules interact with each other. These solutions however tend
to be brittle, are prone to error propagation, and often require a lot of man-
ual engineering [12, 13]. End-to-end Reinforcement Learning (RL) systems have
recently been proposed, as an alternative learning through interactions based
solution, to handle these issues [21]. Unfortunately, as we will demonstrate, RL
agents are often unable to reason on multiple levels of abstraction, have difficul-
ties with mapping language instructions, and often explore poorly.

In contrast, our approach allows the agent to plan and explore on multiple
levels of abstraction (e.g., on room-level and actuator-level) through utilizing a
hierarchical approach. The proposed agent can be trained using only the reward-
signal received from the environment, and only requires an egocentric RGB ob-
servation. This is in contrast to prior approaches, which often also require the
pose of the agent as input.

In order to communicate between the two layers we propose instruction en-
hancements. In this system, the top-level is allowed to enhance the instruction it
received from the environment. For example, if the original instruction is: ”Find
the red ball”, the top-level might choose to enhance this instruction to: ”Find the
red ball, in the kitchen”. This allows the top-level to plan on a higher level of ab-
straction (Which room makes sense to visit next? Where have I already been?).
In turn, the enhanced instruction makes the task more tractable to complete by
the lower-level.

Because both traditional and learning-based approaches are still unsolved,
we take one step back from the typically used photo-realistic simulators [19,
17], and utilize a visually simpler setting [3], while keeping most of the naviga-
tion and generalization complexities. In this setting we demonstrate why a flat,
non-hierarchical RL agent, does not manage to make any progress, and how our
hierarchical approach is capable of exploring the environment in a more prin-
cipled way. We also demonstrate the generalization capabilities of the agent to
find previously unseen objects in new unseen environment configurations.

The contributions of this work are three-fold: (1) We introduce a dual layer
hierarchical approach, capable of simultaneously learning structured room-level
exploration, and low-level navigation. (2) In order to communicate between lay-
ers we propose to enhance instructions, allowing loose coupling of layers and
generalization to novel instructions. (3) The introduction of a goal assessment
module, which is capable of addressing whether the current state satisfies the
instruction, and thus allows offloading language grounding, and integration of
prior knowledge in a learning-based setup.



Structured Exploration Through Instruction Enhancement 3

2 Background

Reinforcement Learning (RL)
A sequential decision-making problem can be modelled as a Partially Observable
Markov Decision Process (POMDP), represented by a tuple ⟨S,A,P,R, Ω,O, γ⟩.

On each time step t, the agent samples an action at ∈ A from its policy
π(at|ot, gt), and the environment produces in turn an observation ot ∈ Ω, ot ∼
O(st) of the internal state st ∈ S according to an unknown transition function
P(st+1|st, at). The agent has access to a reward signal rt(st, at, gt), which can
be utilized to learn the value of the sequence of previously taken actions. In the
goal-conditional RL setting studied in this paper, the reward-signal depends on
an additional goal-signal gt (the instruction). This goal-signal remains constant
during each task instance (an episode). Episodes are terminated after a pre-
determined step-limit is reached, or the agent utilizes a special done-action.

The goal of RL consists of finding a policy π capable of maximizing the sum of
rewards Rt, discounted by a factor γ ∈ [0, 1], through environment interactions:

Rt = E
π,P

[
T∑

t=0

γtrt (ot, gt, at, ot+1)

]
(1)

Proximal Policy Optimization (PPO)
In order to learn a policy the on-policy Proximal Policy Optimization (PPO)
algorithm [18] can be utilized. PPO utilizes an importance-weighted advantage
on samples collected in the environment during a rollout phase. A proximity
clipping term is used as a trust region optimization method in order to allow
updates to use experiences collected during a rollout multiple times. This is done
in order to improve sample efficiency.

Hierarchical Reinforcement Learning (HRL)
Exploration within policy-gradient methods such as PPO is achieved through
sampling actions from a stochastic policy. However, solely depending on this
mechanism to find solutions for complex tasks is often not tractable [15].

Within a two-level goal-conditioned hierarchical approach, a meta-controller
πm(zt|ot, gt) maximizes the extrinsic reward signal rt indirectly by generating
high-level actions zt ∈ Z (often called skills or sub-behaviors). These high-level
actions are executed for c steps by a second low-level policy πc(at|ot, zt), often
called a controller. The controller maximizes an intrinsic reward signal by directly
outputting primitive actions at ∈ A.

3 Approach

The proposed Structured Exploration Through Instruction Enhancement (SETIE)
approach consists of three parts: (a) the meta-controller πm(zt|ot, gt) which per-
forms high-level planning, by working on a lower temporal resolution, (b) the



4 M. Hutsebaut-Buysse et al.

Meta-controller

CNNCNNCNN FC GRU

Egocentric RGB
observation (ot)

Find the red box

V

πm

Instruction enhancement zt

+

CNN CNN CNN + FC GRU

V

πc

Primitive action at

CNN CNN CNN Goal assessmentFC

Embedding GRU

+
FC

FC

Controller

Goal assessment

Instruction (gt)

EmbeddingGRU

Fig. 1: SETIE architecture: the meta-controller handles structured exploration
between different rooms from egocentric observations by enhancing the instruc-
tion. This output is used by the controller, in order to return primitive actions
(navigation). The goal assessment module is used for language grounding.

controller πc(at|ot, gt, zt) which handles low-level navigation, and (c) the goal as-
sessment module G(ot, gt) → {1, 0} which handles language grounding. A visual
representation of the architecture is displayed in Figure 1.

3.1 Meta-controller

The meta-controller πm(zt|ot, gt) is responsible for learning high-level navigation
of the environment solely from partial state observations (through an egocentric
RGB camera). This task consists of two sub-tasks: (1) discovering the layout of
the current environment, determining which rooms are connected to which other
rooms. Commonsense reasoning (the garage is less likely to be connected with
the bathroom) together with a trial-and-error approach can be used in order to
solve this task. (2) Keeping an implicit memory of which rooms have already
been visited in order to explore the environment in a structured manner. Because
the meta-controller reasons on a higher level of abstraction, the agent is capable



Structured Exploration Through Instruction Enhancement 5

to perform these tasks using a generic Gated Recurrent Unit (GRU) component
[5] in its architecture.

The action-space of the meta-controller consists of a discrete set of instruc-
tion enhancements. This set of enhancements is provided up-front to the agent.
Instruction enhancements should be defined on a higher level of abstraction, than
the primitive actions utilized by the controller. By introducing this additional
level of abstraction, the agent is able to explore in a structured manner (e.g.,
room by room).

The meta-controller does not interact with the environment itself, but can
only influence the behavior of the controller through enhancing the instruction.
For example the extrinsic instruction gt could have been ”Find the green key”,
which the meta-controller can enhance to become ”Find the green key, in the
dining room”.

Within HRL, designing a sub-behavior space Z is a complex challenge. Most
often this space is tightly coupled between the different levels. Utilizing language
allows to decouple multiple levels. This allows the controller and meta-controller
to be trained independently. Furthermore, language has also the potential to
generalize to unseen instructions [11], and can make the intention of the agent
clear to a human in the loop [2].

The meta-controller acts on a lower temporal resolution and is asked to pro-
vide a new instruction enhancement every c timesteps.

As the meta-controller has no direct influence on the environment, but only
can act through the controller, its training needs to take into account poten-
tial unexpected behavior of a trained controller. Such quirks might be over-
exploration of some rooms, while quickly moving through others. Accounting for
these eccentricities can be done by utilizing a fully trained and frozen controller
during training of the meta-controller. In this setting the meta-controller ob-
serves the environment, selects an instruction enhancement, and waits until the
controller has taken c-steps, before sampling a novel enhancement. The reward
of the meta-controller consists of the discounted sum of the extrinsic reward
collected during the usage of the active instruction enhancement:

Rt(st) = 1/c

c∑
t=0

γtrt (ot, gt, at, ot+1) (2)

A second option to train the meta-controller consists of assuming a perfectly
behaving controller. In this setting the (simulated) environment will carry out the
enhancements, and move the agent to different rooms, while respecting the floor
plan. Utilizing this second approach allows both controller and meta-controller
to be trained in parallel (as there is no dependency). In order to utilize this
second training scheme a different reward function is required. For example, a
reward function based on the room coverage can be utilized. In this setting each
instruction enhancement which takes the agent to a previously unvisited room
will lead to a positive reward (0.1), while other proposed enhancements will
result in a negative slack penalty (-0.01).



6 M. Hutsebaut-Buysse et al.

While in the empirical evaluation of the presented method instruction en-
hancements consists of rooms to navigate between, other sets of enhancements
can be used in different settings.

3.2 Low-level Controller

The controller πc(at|ot, gt, zt) interacts with the environment through its primi-
tive actions at ∈ A. The controller expects on each timestep an egocentric RGB
observation of the environment ot ∈ Ω together with a task instruction gt ∈ G
and an instruction enhancement zt ∈ Z provided by the meta-controller. The
instruction informs the agent of its objective (e.g., find the red ball), and the
instruction enhancement (e.g., in the kitchen) adds additional information on
how the instruction should be carried out. The instruction enhancement will es-
sentially navigate the agent to different rooms, resulting in episodic exploration
of the different rooms in order to solve the main instruction. Both instruction
and enhancement are provided using simple language sentences.

The action-space A of the controller consists of a discrete set of primitive
movement steps (move forward, turn left, turn right) and a special query-action.
This special query-action is invoked when the agent perceives itself near the goal
object. Utilizing this action will invoke the goal assessment module.

Due to the utilization of instruction enhancements, the controller can be
trained independent of the meta-controller. A straightforward way of training
the controller, is to enhance the instructions by utilizing an oracle. When this
oracle provides the most useful enhancement (e.g., which room should the agent
visit next to find the goal) the extrinsic reward signal can be utilized to reward
the agent. For example in the setting of object navigation, controllers can be
rewarded by utilizing the improvement in geodesic distance between the agent
and the goal object.

3.3 Goal Assessment Module

To signal that the agent thinks it has completed the objective, it needs to use a
special done-action. Utilizing this action will typically end the episode. However,
as we will empirically demonstrate in Section 4.2, incorrect usage of this action
is one of the main failure modes appearing prior to the introduction of a goal
assessment module. In contrast, when the done-action does not terminate the
episode, the agent trains considerable faster.

In order to integrate the goal assessment module, the done-action is removed
from the action-space of the controller. Instead, a query-action is added to this
action space. This novel query action will not terminate the episode (soft ter-
mination), but will query the goal assessment module. If the goal assessment
module deems that the instruction is satisfied, and the agent is close enough to
the target object, the agent will utilize the original done-action.

Essentially, the controller is now able to focus on low-level navigation, and
consult an expert (the goal assessment module) in order to handle language
grounding of the instruction.



Structured Exploration Through Instruction Enhancement 7

In order to allow the agent to find objects it did not see during training, a
novel goal assessment model can be trained independent of the controller and
meta-controller. Which is useful, as training a controller and meta-controller is
typically more computational expensive.

In order to collect training data for the goal assessment module a random
policy can be used, collecting both examples with goal objects, and observa-
tions without any visible objects. For positive samples the correct positive class
is utilized 50% of the time, while in the remainder cases another random pos-
sible instruction is utilized, together with the negative class label. This allows
balancing out positive and negative labels.

4 Empirical Evaluation

4.1 Environment Description

Fig. 2: Two different instances of the evaluation environment. Connections be-
tween rooms are randomized (with a holdout set of configurations). The agent
has no access to this top-down map view.

In order to demonstrate the effectiveness of SETIE, a simulated domestic
environment is utilized within the MiniWorld framework [3]. Two instances are
represented in Figure 2. The environment consists of 7 different rooms (garage,
storage, bedroom, bathroom, living room, dining room and kitchen) together
with a corridor that connects some of these rooms (depending on the instance).
Each room has a distinctive look. As not all rooms are connected, the agent will
often need to backtrack to previously visited points in order to further explore
the environment.

Throughout the environment different abstract objects are randomly placed.
Objects are defined by a category and a color. The categories used are box,
ball and key. In the experiments there is typically one goal object and multiple



8 M. Hutsebaut-Buysse et al.

distractor objects. In each task instance there is only a single object which
matches the goal object description. The task is communicated using language
through the template of ”Find the [color] [shape]”. The following objects are
used during training: red box, green ball, blue box, yellow ball, red key and green
key. There is no association between objects and rooms.

On each timestep the agent observes an egocentric RGB observation ot of
the environment. The reward function is densely defined, and consists of the
improvement in the geodesic distance between the agent and the goal object.
We use a slack penalty of 0.01 which is subtracted from the reward on each
timestep. When reaching the goal object we award the agent with a success
bonus of 10.

rt(st, at, gt) = (−∆geo dist − 0.01) + 10 ∗ 1success (3)

Regarding actions, the agent is capable of turning left and right for a fixed
amount, moving a fixed distance forward, and utilizing a special done-action. In
order to successfully complete an episode, the agent needs to use this done-action
close to the goal object.

In each episode, the agent starts in a random position, and has no access to
its current pose, the name of the room it is in, or a map of the environment.
The connections between the different rooms are randomly enabled. However,
each room is always accessible, and there are no uncommon connections (e.g.,
bathroom connected to kitchen). In total this results in 132 different possible
floor plans. A holdout set of 30 floor plans is not utilized during training, but
kept solely for evaluation purposes. This holdout set can be used in order to
assess the generalization capabilities of the agent regarding floor plans.

4.2 Baselines: why do non-hierarchical approaches fail?

1 2 3 4 5
Timesteps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

single obj, dynamic env
single obj, static env

multiple obj, static env
multiple obj, dynamic env

Fig. 3: Training performance of a non-hierarchical PPO agent with soft-
termination. Results are averaged over 3 runs.



Structured Exploration Through Instruction Enhancement 9

With soft-termination When utilizing a non-hierarchical PPO agent without
any instruction enhancements, and with only a single object (a red box or blue
box) the agent is capable of achieving an average success rate of ∼ 35% after 5
million interactions with the environment (Figure 3). When also introducing the
problem of language grounding, by adding multiple objects to the environment,
the agent has an average success rate of ∼ 20% after 5 million interactions.

No soft-termination (full problem setting) If we also remove the relaxation
of soft termination of the environment we arrive at the full problem setting. In
this setting, when the agent utilizes the done-action incorrectly, the episode is
terminated. We analyzed the failure modes of the baseline agent in this setting
(Figure 4):

Success Detection Stuck Timeout
Episode outcome

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Oc
cu

ra
nc

e 
ra

te

Dynamic environment
Static environment

Fig. 4: Failure modes of the trained non-hierarchical baseline. If the floor plan
remains fixed (static environment), the amount of episodes where the agent gets
stuck decreases, however this in turn increases goal detection errors.

– Detection: agent used done-action but was in the wrong position.
– Timeout: agent did not manage to find the goal within the allowed amount

of timesteps, the agent did not use the done-action at all.
– Stuck: distance between agent and goal object did not change in the final

10 steps.

When looking at these failure modes we noticed that the main reason for
failure in a static environment setting, is related to the detection of goal objects.
When also making the environment dynamic, both local navigation problems
(getting stuck), and planning problems (timeout) start to occur more frequently.

4.3 Does enhancing the instruction make the task more tractable?

From the previous section, we can conclude that a non-hierarchical agent is not
able to reliably solve the studied task. In order to validate whether enhanc-



10 M. Hutsebaut-Buysse et al.

1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

oracle,x-obj dynamic
oracle,x-obj static

oracle,1-obj dynamic
oracle,1-obj static

x-obj, static
x-obj, dynamic

1-obj, dynamic
1-obj, static

Fig. 5: Training performance of the controller, in this setting the agent is allowed
to use the done-action multiple times (soft termination). Without information
to which room the agent should move next (oracle), the agent is unable to learn
a policy in the environment. Results are averaged over 3 runs.

ing the instruction will improve the performance, we trained an agent with its
instructions enhanced through the use of an oracle.

The utilized oracle is aware of the shortest path to the goal object in terms of
rooms to visit. Having access to such an oracle outside the training environment,
is an unrealistic assumption. The learned meta-controller will however take over
the role of this oracle, providing adequate enhancements.

Utilizing an oracle based on the shortest path also alleviates the requirement
of a custom reward function. If the controller is able to correctly interpret and
follow the instruction enhancement, it will also collect the most reward.

As the results plotted in Figure 5 indicate, enhancing the instructions allows
the agent to almost entirely consistently solve the task both in the setting with
a single object (1-obj) and multiple objects (x-obj). This validates the idea that
enhancing the instruction allows the controller to carry out the low-level control
task. In order to solve the entire task there is still the need to remove soft
termination (Section 4.4), and actually train a meta-controller (Section 4.5).

4.4 What is the impact of soft termination?

In the previous experiments, the controller was trained using soft termination.
This means that the agent is allowed to use the done-action multiple times in
an episode. Normally, this would terminate the episode, however we found that
allowing the agent to utilize this action multiple times during training signifi-
cantly increased the sample efficiency and success rate (Figure 6). This training
mechanism is especially crucial in the settings which require language ground-
ing (multiple objects). We can allow this constraint due to the goal assessment
module, which will filter out invalid done-actions when utilizing the entire ar-
chitecture.



Structured Exploration Through Instruction Enhancement 11

1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Multiple objects

static env
dynamic env

soft terminate, static env
soft terminate, dynamic env

1 2 3 4 5
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Single object

static env
dynamic env

soft terminate, dynamic env
soft terminate, static env

Fig. 6: Training performance of the controller, with oracle instruction enhance-
ments. Allowing soft termination, greatly improves sample efficiency. Results are
averaged over 3 runs.

4.5 Does a trained controller allow the meta-controller to solve the
task?

In Figure 7 the results from training a meta-controller (through enhancing the
instructions of a trained controller) in various configurations are plotted. The
meta-controller has no problem exploring the environment when there is only
a single static environment configuration used with a single goal object placed
in it (SR ∼ 95%). When multiple objects are present in the static environment

0.5 1.0 1.5 2.0 2.5
Timesteps 1e6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

single obj, dynamic env
single obj, static env

multiple obj, dynamic env
multiple obj, static env

Fig. 7: Meta-controller training performance. Results are averaged over 3 runs.



12 M. Hutsebaut-Buysse et al.

setting, performance receives a significant hit (SR ∼ 60%), but the agent is still
able to improve its performance.

When the agent needs to manage dynamic instances of environments it starts
with a high success rate, and is able to steadily improve (SR ∼ 70%) in the
setting with a single goal object. However, in the setting with both a dynamic
environment configuration, and multiple objects the agent is not able to improve
its initial performance (SR ∼ 45%).

4.6 Is the agent capable of exploring in a structured way?

The failure modes of the baseline agent indicated that a lot of episodes (∼ 30%)
failed due to the agent running out of allowed steps. This might indicate that the
baseline agent is not able to explore the environment in a structured manner.
In Table 1 we compare the percentage of the rooms the agent visited. From
the results plotted in this table, we can conclude that the hierarchical approach
is capable of covering a significantly larger proportion of the environment on
average.

Agent Objects Environment Room coverage

Hierarchical Single Static 51.0%
Dynamic (holdout) 45.4%
Dynamic (train) 45.5%

Multiple Static 50.2%
Dynamic (holdout) 36.4%
Dynamic (train) 36.7%

Flat (baseline) Single Static 27.8%
Dynamic (holdout) 25.8%
Dynamic (train) 26.3%

Multiple Static 12.5%
Dynamic (holdout) 12.6%
Dynamic (train) 12.6%

Table 1: Average room coverage observed during evaluation runs.

4.7 How well does the proposed hierarchical architecture performs?

In this section the performance of the architecture is analyzed in its entirety.
We are especially interested in how well the agent is capable of handling unseen
environment floor plans, and novel objects.

Zero-shot transfer to unseen environment configurations The agent is
allowed to utilize 102 different floor plans during training. In order to validate
whether the agent is capable of functioning in an environment it did not see



Structured Exploration Through Instruction Enhancement 13

during training, there is also a test-set containing 30 floor plans the agent did
not see during training.

Architecture Objects Static Train Test

Flat PPO baseline Single 37%± 3.71 42%± 4.79 44%± 3.76
Hierarchical + GA Single 81%± 5.20 76%± 5.54 75%± 4.67

Flat PPO baseline Multiple 13%± 3.41 15%± 4.47 12%± 2.66
Hierarchical + soft term. Multiple 82%± 6.44 69%± 5.76 67%± 5.27
Hierarchical Multiple 15%± 3.12 18%± 2.81 15%± 3.13
Hierarchical + GA Multiple 52%± 3.06 38%± 4.58 40%± 4.52

Table 2: Overall performance of the entire architecture. For each setting 10 runs
of each 100 random episodes where used.

From the results plotted in Table 2 we can conclude that the hierarchical
approach has a high success rate in the static environment. Especially, when
there is no language grounding required.

In the setting with multiple objects, the hierarchical agent is now able to
reach a high success rate when soft termination is allowed. When soft termina-
tion is disabled, the goal assessment module is capable of somewhat emulating
this improved performance. However, there still remains room for improvement.
When qualitatively looking at the mistakes made by the goal assessment module,
we noticed that it often made mistakes if the goal object was barely visible in
the single passed RGB observation.

In all cases, the agent was successfully capable of achieving a similar level of
performance in the floor plan holdout set as in the training set.

Zero-shot transfer to unseen goal objects Because the instructions are for-
mulated in natural language, we have an interface that makes it straightforward
to test how well the agent handles combinations of colors and objects it did not
see during training. The goal assessment module was retrained in order to be
capable to detect the novel combinations of colors and shapes, while keeping all
original navigation policies (controller and meta-controller).

Similar to the zero-shot environment transfer experiments, we empirically
can validate from the results in Table 3 that the agent is able to successfully find
combinations of colors and shapes the agent did not see before without having
to re-train the controller and meta-controller.



14 M. Hutsebaut-Buysse et al.

Environment: Static Train Test

Flat PPO Baseline 15%± 1.69 15%± 3.1 14%± 4.21
Hierarchical 17%± 2.54 15%± 2.96 14%± 3.52
Hierarchical + soft term. 78%± 3.75 69%± 2.75 66%± 3.77
Hierarchical + GA 52%± 4.36 39%± 3.7 38%± 4.58

Table 3: Overall performance of the entire architecture on a holdout set of goal
objects. For each setting 10 runs of each 100 random episodes where used.

5 Related work

Object Navigation in RL
Prior proposed architectures either fully rely on end-to-end training [21], make
use of self-supervised learning through auxiliar tasks [10, 22], or use a planning-
style approach by inferring maps from observations [1, 6]. In contrast to our
method, prior work relies on a pose sensor.

Structured exploration through HRL
HRL [9] is a core mechanism in object navigation. In these architectures a top-
level meta-controller is trained to output relative goal position points which
should be reachable by a trained PointGoal agent. For example the agent in
[16] is capable of inferring a rough floor plan of the environment, the top-level
outputs pointgoals in order to reach a desired area. This is similar to how we
navigate the agent to different rooms in order to solve ObjectNav tasks.

Instead of using points as the interface between different levels of the archi-
tecture, natural language has also been proposed as the interface [11, 8], allowing
the lower-level to generalize to unseen instructions.

Language grounding
The problem of language grounding has been approached solely from data [14],
by adding auxiliary tasks and curriculum learning [7] and feature-wise affine
transformation based on the instruction [4].

6 Conclusion

In this paper we study the problem of structured exploration in an object navi-
gation setting. We demonstrate how the three sub-problems of: navigation, high
level reasoning, and language grounding each contribute to the complexity of ob-
ject navigation. A hierarchical approach is proposed in order to handle both the
low-level navigation, and high-level planning. In order to have a loose coupling
between the layers, language is used to enhance the original instruction in a way
that makes it feasible for a low-level controller to partially tackle the overall task.
To handle the third sub-problem of basic language grounding, a goal assessment



Structured Exploration Through Instruction Enhancement 15

module is introduced in order to guide the controller in assessing whether goal
objects have been reached.

The effectiveness of the proposed architecture is empirically demonstrated
in a simulated domestic environment. We demonstrate that the agent is able
to better handle unseen environment configurations, and unseen goal objects
compared to a non-hierarchical baseline.

In future work we plan on researching how we can further improve the perfor-
mance in dynamic environments, make the set of instruction enhancements more
dynamic, and how well the SETIE approach performs in real-world settings.

ACKNOWLEDGMENT

This research received funding from the Flemish Government under the “On-
derzoeksprogramma Artificile Intelligentie (AI) Vlaanderen” programme.

References

1. Chaplot, D.S., Gandhi, D., Gupta, A., Salakhutdinov, R.: Object Goal Navigation
using Goal-Oriented Semantic Exploration. In: Advances in Neural Information
Processing Systems 33 (2020)

2. Chen, V., Gupta, A., Marino, K.: Ask Your Humans: Using Human Instructions
to Improve Generalization in Reinforcement Learning. In: ICLR21 (2021)

3. Chevalier-Boisvert, M.: gym-miniworld environment for openai gym.
https://github.com/maximecb/gym-miniworld (2018)

4. Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems, L., Saharia, C.,
Nguyen, T.H., Bengio, Y.: BabyAI: First Steps Towards Grounded Language
Learning With a Human In the Loop. In: ICLR19 (2019)

5. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. In: EMNLP14 (2014)

6. Gupta, S., Tolani, V., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive
Mapping and Planning for Visual Navigation. International Journal of Computer
Vision 128(5), 1311–1330 (2020)

7. Hermann, K.M., Hill, F., Green, S., Wang, F., Faulkner, R., Soyer, H., Szepesvari,
D., Czarnecki, W.M., Jaderberg, M., Teplyashin, D., Wainwright, M., Apps, C.,
Hassabis, D., Blunsom, P.: Grounded Language Learning in a Simulated 3D World.
arXiv:1706.06551 [cs, stat] (2017)

8. Hu, H., Yarats, D., Gong, Q., Tian, Y., Lewis, M.: Hierarchical Decision Making by
Generating and Following Natural Language Instructions. In: NeurIPS19 (2019)

9. Hutsebaut-Buysse, M., Mets, K., Latré, S.: Hierarchical reinforcement learning: A
survey and open research challenges. Machine Learning and Knowledge Extraction
4(1), 172–221 (2022)

10. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,
Kavukcuoglu, K.: Reinforcement Learning with Unsupervised Auxiliary Tasks. In:
ICLR17 (2017)

11. Jiang, Y., Gu, S., Murphy, K., Finn, C.: Language as an Abstraction for Hierar-
chical Deep Reinforcement Learning. In: NeurIPS19 (2019)



16 M. Hutsebaut-Buysse et al.

12. Karkus, P., Cai, S., Hsu, D.: Differentiable slam-net: Learning particle slam for
visual navigation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 2815–2825 (2021)

13. Mishkin, D., Dosovitskiy, A., Koltun, V.: Benchmarking Classic and Learned
Navigation in Complex 3D Environments. arXiv:1901.10915 [cs] (2019),
http://arxiv.org/abs/1901.10915

14. Misra, D., Langford, J., Artzi, Y.: Mapping Instructions and Visual Observations
to Actions with Reinforcement Learning. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing (2017)

15. Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., Levine, S.: Why Does Hierarchy
(Sometimes) Work So Well in Reinforcement Learning? In: NeurIPS 2019 DeepRL
Workshop (2019), http://arxiv.org/abs/1909.10618

16. Narasimhan, M., Wijmans, E., Chen, X., Darrell, T., Batra, D., Parikh, D., Singh,
A.: Seeing the Un-Scene: Learning Amodal Semantic Maps for Room Navigation.
In: ECCV20 (2020)

17. Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub,
J., Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.: Habitat: A Platform for
Embodied AI Research. In: Proceedings of the IEEE International Conference on
Computer Vision (2019)

18. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Prox-
imal Policy Optimization Algorithms. arXiv:1707.06347 [cs] (2017),
http://arxiv.org/abs/1707.06347

19. Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre,
N., Mukadam, M., Chaplot, D., Maksymets, O., Gokaslan, A., Vondrus, V., Dharur,
S., Meier, F., Galuba, W., Chang, A., Kira, Z., Koltun, V., Malik, J., Savva, M.,
Batra, D.: Habitat 2.0: Training Home Assistants to Rearrange their Habitat. In:
Advances in Neural Information Processing Systems. vol. 34, pp. 251–266 (2021)

20. Weihs, L., Salvador, J., Kotar, K., Jain, U., Zeng, K.H., Mottaghi, R., Kembhavi,
A.: AllenAct: A Framework for Embodied AI Research. In: CoRR2020 (2020)

21. Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., Savva, M.,
Batra, D.: DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion
Frames. In: ICLR20 (2020)

22. Ye, J., Batra, D., Wijmans, E., Das, A.: Auxiliary Tasks Speed Up Learning Point-
Goal Navigation. In: Proceedings of the 2020 Conference on Robot Learning (2020)


