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The success of brain-inspired deep learning in AI is naturally focusing attention
back onto those inspirations and abstractions from neuroscience [7]. One such
example is the abstraction of the sparse, pulsed and event-based nature of com-
munication between biological neurons into neural units that communicate real
values at every iteration or timestep of evaluation, taking the rate of firing of
biological spiking neurons as an analog value . Spiking neurons, as more detailed
neural abstractions, are theoretically more powerful compared to analog neural
units [9] as they allow the relative timing of individual spikes to carry significant
information. A real-world example in nature is the efficient sound localization
in animals like Barn Owls using precise spike-timing [6]. The sparse and binary
nature of communication similarly has the potential to drastically reduce energy
consumption in specialized hardware, in the form of neuromorphic computing
[3].

Since their introduction, numerous approaches to learning in spiking neural
networks have been developed [2, 14, 20, 8, 5]. All such approaches define how in-
put signals are transduced into sequences of spikes, and how output spike-trains
are interpreted with respect to goals, learning rules, or loss functions. For super-
vised learning, approaches that calculate the gradient of the loss function with
respect to the weights have to deal with the discontinuous nature of the spiking
mechanism inside neurons. Local linearized approximations like SpikeProp [2]
can be generalized to approximate “surrogate” gradients [10], or even calculated
exactly in special cases [16]. The use of surrogate gradients in particular has re-
cently resulted in rapidly improving performance on select benchmarks, closing
the performance gap with conventional deep learning approaches for smaller im-
age recognition tasks like CIFAR10 and (Fashion) MNIST, and demonstrating
improved performance on temporal tasks like TIMIT speech recognition [1]. Still,
spiking neural networks (SNNs) have struggled to demonstrate a clear advantage
compared to classical artificial neural networks (ANNs) [13, 12].
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Here, we introduce a novel approach to Spiking Recurrent Neural Networks
(SRNNs)[17], networks that include recurrently connected layers of spiking neu-
rons . We demonstrate how these networks can be trained to high performance
on hard benchmarks, exceeding existing state-of-the-art in SNNs on all-but-one
benchmark, and approaching or exceeding state-of-the-art in classical recurrent
artificial neural networks. The high-performance in SRNNs is achieved by apply-
ing back-propagation-through-time (BPTT)[15] to spiking neurons using a novel
Multi-Gaussian surrogate gradient and using adaptive spiking neurons where
the internal time-constant parameters are co-trained with network weights. The
Multi-Gaussian surrogate gradient is constructed to include negative slopes, sim-
ilar to the gradient of the sigmoid-like dSilu activation function [4]: we find that
the Multi-Gaussian surrogate gradient consistently outperforms other existing
surrogate gradients. Similarly, co-training the internal time-constants of adaptive
spiking neurons proved always beneficial. We demonstrate that these ingredients
jointly improve performance to a competitive level while maintaining sparse av-
erage network activity.

We demonstrate the superior performance of SRNNs for well-known bench-
marks that have an inherent temporal dimension, like ECG wave-pattern classi-
fication, speech (Google Speech Commands, TIMIT), radar gesture recognition
(SoLi), and classical hard benchmarks like sequential MNIST and its permuted
variant. We find that the SRNNs need very little communication, with the av-
erage spiking neuron emitting a spike once every 3 to 30 timesteps, depending
on the task. Calculating the theoretical energy cost of computation, we then
show that in SRNNs, cheap Accumulate (AC) operations dominate over more
expensive Multiply-Accumulate (MAC) operations. Based on relative MAC vs.
AC energy cost [12, 13], we argue that these sparsely spiking SRNNs have an
energy advantage ranging from one to three orders of magnitude over RNNs and
ANNs with comparable accuracy, depending on network and task complexity.

Using surrogate-gradients, the BPTT-gradient in the SRNNs can be com-
puted using standard deep learning frameworks, where we used PyTorch [11].
With this approach, complicated architectures and spiking neuron models can be
trained with state-of-the-art optimizers, regularizers, and visualization tools. At
the same time, this approach is costly in terms of memory use and training time,
as the computational graph is fully unrolled over all timesteps, precluding online
and on-chip learning. Additionally, the abundant spatial and temporal sparsity
is not exploited in the frameworks. This also limits the size of the networks
to which this approach can be applied: for significantly larger networks, either
dedicated hardware and/or sparsity optimized frameworks are needed[19]. Ap-
proximations to BPTT like eProp [1] or alternative recurrent learning methods
like RTRL[18] may also help alleviate this limitation.
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