
A Case for Representation-Based Successor
Features for Transfer in Reinforcement Learning

Louis Bagot1[0000−0001−6300−6993], Kevin Mets1[0000−0002−4812−4841], Tom De
Schepper1[0000−0002−2969−3133], and Steven Latré1[0000−0002−8267−9955]

University of Antwerp - imec;
IDLab - Department of Computer Science;
Sint-Pietersvliet 7, 2000 Antwerp, Belgium

{firstname.lastname}@uantwerpen.be

Abstract. Successor Features stand at the boundary between model-
free and model-based Reinforcement Learning. By predicting a sum of
features instead of a sum of rewards, they enable very efficient trans-
fer learning through the General Policy Improvement Theorem. Recent
work has shifted the focus of the feature space from learnt features to a
well-chosen set of base rewards. While this framework greatly improves
stability, it discards the flexibility to generalize outside the base reward
space. In this paper, we aim to rekindle interest in "representation-based"
Successor Features for transfer learning, by clarifying the possible design
choices and providing simple cases where they prevail. In a robot arm
scenario, we find that they more easily transfer to unseen tasks without
suffering from instabilities during training. We provide visual interpre-
tation of the learnt features to explain this performance.

Keywords: Reinforcement Learning · Successor Features · Transfer Learn-
ing · Auxiliary Tasks.

1 Introduction

In Reinforcement Learning (RL, Sutton and Barto 2018), an agent interacts with
an environment, performing an action to gather rewards in a sequential task,
using states as input. Transfer Learning then refers to the ability to extract and
re-use knowledge from previously learnt tasks for new environments.

RL methods are often divided into model-free and model-based RL. Model-
free RL refers to a direct mapping of states-action to values or probabilities,
predicting either a sum of rewards or a policy. This "reflexive" behavior is con-
trasted by model-based RL, which attempts to model the environment, and there-
fore learn and plan mainly in said model.

The Successor Representation (GPI, Dayan 1993; Kulkarni et al. 2016), later
generalized to Successor Features (SFs), is sometimes seen as a middle-ground
between model-based and model-free RL (Lehnert and Littman 2020). Indeed,
instead of learning a sum of rewards or a model, SFs attempt to predict a sum of
features, leading to a form of generalized Policy Evaluation over all the reward

2 L. Bagot et al.

functions that can be modelled by the feature space. From there, very efficient
transfer learning can be achieved through the Generalized Policy Improvement
Theorem (Andre Barreto, Dabney, et al. 2017) over a set of skills. Follow-up
work in the field (Andre Barreto, Borsa, et al. 2018) has shifted the focus from
learning a set of features to choosing a good set of base rewards to act as features,
thus explicitly executing Policy Evaluation over this reward basis. This choice
leads to a greater stability of the features, and therefore an easier prediction of
their sum. On the other hand, its transfer potential relies entirely on the ability
of the reward basis to cover as many downstream tasks as possible.

In this paper, we make a case for "representation-based" Successor Features,
where the set of features to predict is learnt through Representation Learning
methods -here, auxiliary tasks- rather than a fixed reward basis ("reward-based"
SFs). To our best knowledge, the GPI has never been applied with general-
purpose feature-extraction methods before, nor have representation-based SFs
and reward-based SFs been identified and compared. Through an overview of
the theory and literature, we motivate certain design choices for the architecture
and learning of representation-based SFs, that are later justified through exper-
iments. We empirically show that transfer to unseen tasks of different natures is
possible with the more general features learnt by representation-based SFs; tasks
on which reward-based SFs fail to transfer. Finally, we provide visual intuition
for our results - indeed, we can interpret the learnt features and weights, and
understand how the inclusion of auxiliary tasks allows for efficient transfer.

We start by providing a study-like approach to Successor Features, with the
necessary background in Section 2, followed by an overview of the literature with
respect to several key design choices in SFs in Section 3. We then introduce the
general framework for "representation-based" SFs in Section 4 and a compari-
son of representation-based and reward-based approaches in a simple robot arm
scenario in Section 5, with visual interpretations of the learnt features.

2 Background

2.1 Reinforcement Learning and Transfer

The RL interactions are generally formalized with a Markov Decision Process
(MDP) M = (S,A,R, p, γ), respectively containing the state space, action space,
reward space, dynamics function and discount factor. Of particular interest here,
the dynamics function p (s′, r | s, a) dictates the next state and reward, and
therefore generates the reward function r (s, a) =

∑
s′,r p (s

′, r | s, a) r, which
can also be expressed as r (s, a, s′).

In RL, the notion of Transfer Learning (TL) can have several interpretations.
The formalization we use (Z. Zhu, Lin, and Zhou 2020) is to consider a learning
in several phases. In an initial phase, the agent learns from a first set of MDPs.
In subsequent phases, the agent applies the learnt knowledge or minimally re-
learns in new MDP sets. What we are interested in SFs is mainly the transfer in
the reward function, i.e. the MDPs will mainly differ in the reward space R and
the reward dynamics r (s, a, s′).

A Case for Representation-Based SF in RL 3

2.2 Successor Features & General Policy Improvement

Transition Features and Task Vector The Successor Representation was
originally introduced by Dayan 1993 in a founding work, and first applied in
Deep Learning by Kulkarni et al. 2016. However, arguably the cornerstone paper
for us is in the generalization to Successor Features (SFs) and the introduction
of the General Policy Improvement Theorem (GPI) by Andre Barreto, Dabney,
et al. 2017. All background presented in this section was introduced in this work,
unless mentioned otherwise. Successor Features start from the main assumption

ϕ (s, a, s′)
⊤
w = r (s, a, s′) (1)

with ϕ (s, a, s′) and w ∈ Rd. The vector ϕ (s, a, s′) represents features of that
transition; in particular, control-oriented features if possible, i.e. that contain
information that will be relevant for downstream tasks. We refer to ϕ as the
transition features and d as the feature dimension.

w indicates which features ϕi are desirable or not for our particular task.
It therefore contains task information: ϕ is task-independent, simply describing
the elements of the transition, while w provides a notion of preference in ϕ. We
therefore call w the task vector, and write it w(j) when associated with an MDP
M (j) and reward function r(j).

Successor Features From Equation (1), Andre Barreto, Dabney, et al. 2017
rewrite the definition for the action-value function Q:

Qπ (s, a)
.
= Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]

(1)
= Eπ

[∞∑
k=0

γkϕ (St+k, At+k, St+k+1) | s, a

]⊤

w

.
= Ψπ (s, a)

⊤
w

(2)

This naturally leads to the definition of the Successor Features Ψπ, repre-
senting the expected sum of transition features ϕ observed when following π. A
very interesting property of Successor Features is that they behave like a value
function, and can therefore be learnt efficiently using TD learning:

Ψπ (s, a)
.
= Eπ

[∞∑
k=0

γkϕt+k | St = s,At = a

]
= Eπ [ϕt + γΨπ (St+1, At+1) | St = s,At = a]

(3)

General Policy Improvement Note that Ψπ is task-independent, it only de-
scribes the interactions of π and p in terms of ϕ. More formally, if we focus on a
given task M (j) with reward function r(j), we obtain Q

(j)
π (s, a) = Ψπ (s, a)

⊤
w(j).

4 L. Bagot et al.

This means that, for any task M (j), we can directly compute the Q-value of our
policy π, Q(j)

π , as long as we know w(j). This, in turn, means that we can im-
prove on π for a new task by applying the Policy Improvement Theorem. Taking
this further still, if we assume that we have a set of D policies {πj}j that we
call a skill library, then the General Policy Improvement Theorem (GPI, Andre
Barreto, Dabney, et al. 2017; Andre Barreto, Borsa, et al. 2018) allows us to
compute the strongest policy available for a new task M ′ by using

π′ = argmax
a,j

QM ′

πj
(s, a) ≥ πj ∀j

π′ = argmax
a,j

Ψπj
(s, a)

⊤
w′

(4)

In other words, when combining the GPI and SFs, using a skill library we can
directly compute the strongest policy available for any new task M ′ as long as
we can fit the linear regression ϕ⊤w′ ≈ r′, with some bounds on the uncertainty.

3 Design and Algorithmic Choices in SFs

3.1 Representation- and Reward-based Transition Features

RL

Fig. 1. Instabilities in
the SF learning loop:
ϕ is estimated by Ψπ

(leading to Qπ), which
modifies π through
RL, generating new
data modifying ϕ

There are essentially two crucial design questions regard-
ing GPI-based Transfer using SFs: (i) the skill library,
and (ii) the choice of ϕ. In this paper, we will focus on
the second issue. The choice of ϕ inherently controls our
generalization power for transfer. Indeed, the objective
is to design a ϕ so that Equation 1 holds as closely as
possible for as many downstream tasks as possible. Re-
cently, the literature has shifted into two main branches
regarding this choice, that we refer to as

– Representation-based ϕ (e.g. Kulkarni et al.
2016): the transition features are learnt through some
Representation Learning method, which attempts to
include as many potentially interesting features as
possible. While this holds great potential for transfer,
the resulting learning loop is a form of non-stationary
reward setting, as can be visualized on the graph
on the right. This was observed by Andre Barreto,
Borsa, et al. 2018 and led to the second branch:

– Reward-based ϕ: since we start from a skill library
to use the GPI, we can instead assume a reward library {r1 · · · rD} generating
these skills. The proposal is then to join the two critical design questions into
the single ϕ = [r1 · · · rD]. Conceptually, according to Equation 1 this means
that all downstream rewards will have to be expressed as a weighted sum
of our reward library, which can then also be called reward basis. The main

A Case for Representation-Based SF in RL 5

advantages of this method is that it gets rid of the stability issues, since the
reward library can be assumed stationary (therefore breaking the π → ϕ
link); and it solves the dilemma of the ϕ design.

Following the work by Andre Barreto, Borsa, et al. 2018, we observe a switch
in paradigm from representation-based to reward-based SFs (Borsa et al. 2018;
André Barreto, Hou, et al. 2020; André Barreto, Borsa, et al. 2019; Machado,
Andre Barreto, and Precup 2021). While reward-based SFs may seem attractive,
we introduce a simple thought experiment to showcase their main weakness:
imagine an environment populated with colored boxes (red, green, blue). The
initial tasks are to reach the red and green boxes, and the transfer task is to
reach the blue box. If our reward library consists of the initial tasks {rG, rR}, a
weighted sum of these can never successfully model the blue box reward rB . In
comparison, with a simple auto-encoder auxiliary task, a representation-based
SF scenario will naturally contain blue box information in its representation, and
can therefore hope to perform much better than reward-based SFs. In essence,
the reward basis can be limiting in ways that a learnt representation can easily
cover for, even without expert knowledge. In other words, reward-based SFs put
huge pressure on the reward library to cover the skill and reward space.

Therefore, in this paper, we argue that representation-based SFs hold suffi-
ciently strong arguments in their transfer potential to make up for their insta-
bilities. In the rest of this section, we describe algorithmic differences sprouting
from choices of the ϕ conditioning.

3.2 On the Transition Feature conditioning

The most general form of Equation 1 conditions ϕ on the transition (s, a, s′),
however it is generally inefficient and not necessary to take in so much infor-
mation. In practice, several combinations of s, s′ and a are viable and lead to
different assumptions and algorithmic ideas. We delve into the most popular
choices found in the literature and argue for the one we find most relevant.

State-conditioned ϕ (s) Given how closely the choice of ϕ ties with Representa-
tion Learning, the most natural and popular choice for conditioning is to simply
let ϕ be features of the state, ϕ = ϕ (s), and let w isolate desirable features of
the state (Kulkarni et al. 2016; Zhang et al. 2017; Machado, Rosenbaum, et al.
2018; Hansen et al. 2020). However, this choice means that Equation 1 will only
hold if ϕ implicitly contains action information; in other words, ϕ (s) needs to be
policy-dependent: ϕ = ϕπ (s). This is a major issue for applying the GPI, since
every single policy in the library will need to learn its own ϕ and associated w.
This complicates the setup, increases training time, reduces interpretability of
the learnt tasks and nullifies potential for downstream generalized Meta-training
(by inputting w, André Barreto, Borsa, et al. 2019; Machado, Andre Barreto,
and Precup 2021). The arduousness of the process can be observed in Zhang
et al. 2017, where new ϕπ need to be adapted for every single task tackled. Note

6 L. Bagot et al.

that several of the cited papers ignore the policy-dependence entirely, by adopt-
ing an environment where the choice makes little difference; however this is not
generalizable to any MDP.

Next-state conditioned ϕ (s′) To encapsulate policy-independent reward infor-
mation, we can instead turn to next-state conditioning (Ma, Wen, and Bengio
2018). The difference is subtle and might not always be clear in the literature,
as the Ψ training can be identical to state-conditioned features, but the reward
prediction approximation differs: ϕ (s′)

⊤
w ≈ r (s, a, s′). While this choice lifts

the policy-dependence and solves the issues mentioned above, in the general case
it is not possible to infer rewards from the next state uniquely. As a simple ex-
ample, in a gridworld with two states leading to a terminal cell with rewards +1
and -1, the terminal state s′ = sT alone doesn’t contain enough information to
tell the rewards apart.

State-action conditioned ϕ (s, a) This choice is also policy-independent, and only
requires ϕ to encapsulate some dynamics information. It is theoretically sound
compared to next-state conditioning, while being directly scalable to apply the
GPI with a single w per task. We can either take a as input or use a different
head per discrete action. In the first case, this slows down inference when we
need to compute all actions at the same time. In the latter case, it scales the
representation by |A|, and we have no guarantee that the learnt features will
be consistent over actions. In practice, we opt for the second choice and find
that both issues are minor, and that the theoretical and algorithmic benefits of
picking state-action conditioning outweigh its drawbacks. This is therefore our
preferred choice and the one of several prior works (Y. Zhu et al. 2017; Andre
Barreto, Borsa, et al. 2018).

4 Representation-based Successor Features

In this section, we describe our implementation choices to apply GPI with
representation-based SFs.

4.1 Training

Forcing the Bellman Equation Note that in the state-action conditioning sce-
nario, Equation 3 becomes

Ψπ (s, a) = Eπ [ϕ (St, At) + γΨπ (St+1, At+1) | St = s,At = a]

= ϕ (s, a) + γEπ [Ψπ (St+1, At+1) | St = s,At = a]
(5)

In other words, since we have access to ϕ (s, a) as part of our architecture,
we can focus on directly predicting the next state-action SFs Ψπ (St+1, At+1),
and spare our approximator from predicting the first step and applying the
discount factor. This is tantamount to having access to the immediate reward
in traditional RL. We refer to this as "forcing" the Bellman equation.

A Case for Representation-Based SF in RL 7

Auxiliary Task Learning Most previous methods of learning ϕ can be seen with
the lens of Auxiliary Task Learning (Jaderberg et al. 2017; Gelada et al. 2019);
in other words, using some alternative loss in conjunction with the real objec-
tive to guide the representation in containing generally useful features. In RL,
three auxiliary tasks sprout naturally from available information in the MDP:
(i) reward prediction r̂ ≈ r (s, a), (ii) state reconstruction ŝ ≈ s, and (iii) for-
ward prediction ŝ′ ≈ s′ ∼ p (s′ | s, a). Reward prediction is already a core ele-
ment of the SF learning loop through Equation 1, and can be identified as the
"main objective" for ϕ. On top of reward prediction, we use state reconstruc-
tion and forward prediction tasks, which can both be implemented easily with
state-action conditioned features. Previous work has implemented both, usually
independently (reconstruction: Kulkarni et al. 2016; Zhang et al. 2017; forward
model: Machado, Rosenbaum, et al. 2018; Machado, Bellemare, and Bowling
2020). We combine both in an auto-encoder-style architecture for our ϕ training
and train all three tasks to learn ϕ. We provide more architectural details in the
following subsection.

Loss computation Although there might seem to be several moving parts to the
SF training of the skill library, it generally winds down the the same major three
components regardless of ϕ conditioning, summed up in the following losses:

Lr =
∣∣∣∣ϕ⊤w − r (s, a, s′)

∣∣∣∣
LSF =

∣∣∣∣∣∣ϕ+ γmax
a∗

Ψπ (s
′, a∗)− Ψπ (s, a)

∣∣∣∣∣∣
Laux = ||x̂ (ϕ)− x||

(6)

where Lr simply represents Equation 1, LSF is a control version of Equation
3 (here, using QLearning), and Laux represents any chosen auxiliary tasks on
prediction target x (e.g. the state or next state, as seen in the previous para-
graph). This is the general idea we follow; all our specific choices are mentioned
in the experiments, Section 5.2. Previous work sometimes also optimizes w to
predict the Q-value through LQ =

∣∣∣∣∣∣Ψ (s, a)
⊤
w − Q̂ (s, a)

∣∣∣∣∣∣ (e.g. Y. Zhu et al.

2017; Janz et al. 2019) where Q̂ (s, a) is any Q-value target – we do not incor-
porate this loss, to keep the framework simple by underlining the difference in
training between modules. In order to use the GPI, the Lr and LSF losses in
Equation 6 simply need to be computed for each reward or skill in the library.

The most basic form of SF transfer learning is achieved by computing a new
task vector for the reward of the new task: ϕ⊤w′ ≈ r′ (s, a, s′), and applying
the GPI on the skill library. It is also possible to retrain a new policy through
any RL means, using the GPI policy as an initial behavior to gain jump-start
performance.

4.2 Neural Network Architecture

The literature has seen a very wide variety of architectures depending on feature-
conditioning, specific tasks or transfer scenarios – as such, virtually all papers

8 L. Bagot et al.

Input dimension
Hidden dimension
Feature dimension
Number of actions

Detach gradient
Dot product
Reshape

Fig. 2. SF architecture. The ϕ extraction module appears in green, with two auxiliary
tasks in blue. The SF network is in purple and displays a shared Ψ body over policies.
All layers are Fully Connected, with output dimension above the layer. ϕ (s, a) is simply
reshaped from a concatenated k × d layer, leading to action-dependent features.

cited thus far have used a unique architecture. However, the core is generally the
same: a Neural Network with heads for ϕ, Ψ and maybe some auxiliary tasks.
One of the main design choice in the architecture generally revolves around the
parameter sharing between ϕ and Ψ : one might decide to backpropagate both
losses through a shared body (Y. Zhu et al. 2017; Andre Barreto, Borsa, et al.
2018) or instead decide to keep ϕ totally independent from Ψ by detaching the
gradient (Kulkarni et al. 2016; Machado, Bellemare, and Bowling 2020). In order
to isolate the ϕ training and dampen the SF instability loop, we opt for the latter,
and study this choice in the experiments in Section 5. The entire architecture we
use (ϕ, Ψ and the task and auxiliary task heads w, ŝ, ŝ′) can be seen in Figure
2. Note that we share parameters between the different Ψπj by using a shared
body, but detach their gradient from flowing into ϕ.

An important point to underline from our architecture is that the ϕ (s, a) ∈
Rd are different vectors for all actions, in a similar fashion as the several action
heads Q (s, a) in a regular DQN (Mnih et al. 2015), and as mentioned in Section
3.2. While our choice allows for rapid computation of all action features, we need
to be aware that there is no reason the transition features should be similar
between actions – they could be encoding information in vastly different ways.
However, they all need to pass through the same w ∈ Rd to approximate the
reward – we can expect that this acts as a form of regularization over the vectors.
To further stress on this idea, the ŝ and ŝ′ modules also take as input a d-
dimensional vector, which means the ϕ (s, a) have yet more implicit motivation
to coordinate their representations. We study this idea in Section 5.5.

A Case for Representation-Based SF in RL 9

5 Experiments

5.1 Environment & Tasks

Fig. 3. Reacher Domain
adapted from Andre Barreto,
Dabney, et al. 2017. Tasks:
in red, the 5 training tasks
(skill library); in grey, the 8
goal-reaching test tasks; in
green, a representation of two
speed-maximization tasks.

We replicate the Reacher Domain environment
used in Andre Barreto, Dabney, et al. 2017,
based on the the MuJoCo Reacher environment
(Todorov, Erez, and Tassa 2012) and adapted as
a discrete-action, goal-reaching transfer task. It
simulates a two-jointed robot arm moving in a 2D
plane, as represented in Figure 3.

Following the paper, we use a state s =[
θ1, θ2, θ̇1, θ̇2

]
∈ R4 with θi the angle (in radians)

of the ith arm starting from the center, and θ̇i its
angular speed, which we divide by 10 for normal-
ization purposes. The action space is discrete with
|A| = 9 encoding all combinations of the [−1, 0, 1]
possible torques for both arms. We define two pos-
sible tasks: the goal-reaching task is to reach a
given 2D position g, with reward rg (s, a, s

′) =
1 − ||g − s′||2. The speed-maximizing task is to
maximize or minimize the speed of the arms. We
use 8 speed transfer tasks, all combinations of
maximizing, ignoring or minimizing θ̇j for both arms, except the task to ignore
both. The resulting rewards are therefore rspeed (s, a, s

′) =
∑

j:1,2 mjs
′
[
θ̇j

]
with

mj ∈ [−1, 0, 1]. We choose this set of speed-maximization tasks as transfer tasks
that do not contain any direct link with goal-reaching tasks, in order to study
generalization capacities of the learnt features beyond solved tasks. Differently
from Andre Barreto, Dabney, et al. 2017, we do not provide any form of goal as
input or part of ϕ, and instead assume the agent only has access to the reward
to maximize – this is a much more general scenario that does not make any
assumption on the type of transfer we will be tackling. We train our skill library
on D = 5 goal-reaching tasks, using the goals in red1 on Figure 3, which de-
fine the reward-based transition features ϕ (s, a) = [r1 (s, a) , · · · , r5 (s, a)]. Our
Transfer tasks are 8 additional goals presented in grey, and the 8 mentioned
speed maximizing tasks.

5.2 Agent Training

As mentioned above, we use state-action conditioning with d = 32 and force the
Bellman Equation on a DQN-style algorithm (with target network Ψ−

π). We use

1 Note that our training goals differ from the original paper: we found them to be
more expressive, able to transfer to more downstream behaviors.

10 L. Bagot et al.

both reconstruction and forward prediction auxiliary tasks in an auto-encoder
setting, resulting in the final auxiliary loss

Laux = (1− λfw) ||ŝ− s||2 + λfw||ŝ′ − s′||2

We combine our losses through L = Lr + λauxLaux + LSF ; though we should
note that the SF branch is completely independent from the ϕ extraction and
might as well be thought of as optimizing a different network entirely.

We train the reward library for 100K steps and the transfer tasks for 10K
steps; all other hyperparameters are provided in Appendix A. Each episode of a
learning phase (library training, goal transfer, speed transfer) randomly samples
an objective from the given phase, and the agent therefore observes its reward
within the time limit T = 100. To simulate a continual learning scenario from
the agent’s perspective, we do not include the time-based terminal transitions
in the buffer. All quantitative experiments are run over 10 seeds; qualitative
visualizations are selected on a random seed.

5.3 Main results

We compare the representation-based SF agent with a reward-based agent, i.e.
using ϕ (s, a) = [r1 (s, a) , · · · , rD (s, a)] with {rj} our reward library (red tasks
in Figure 3). Our results in training the library and transferring to both goal-
reaching and speed-maximization tasks can be found in Figure 4.

Training performance One of the main motivations for switching from representation-
based to reward-based SFs was the instability loops (Figure 1) leading to a
difficult training of the skill library. While our environment is simple and our
objective is not to contradict this, we find that representation-based SFs are just
as efficient than reward-based SFs in learning a skill library. As can be seen in
Figure 4 (top left), their performances are very similar, showing that learning
a single ϕ representation with auxiliary tasks can scale to several skills in a SF
setting. Note that in our network architecture (Figure 2, Section 4.2) we de-
cided to detach Ψ to prevent its updates from affecting the transition features
ϕ, to dampen the instability loop. We now report the importance of this choice:
we attach Ψ to the ϕ network and let its gradient flow through the transition
features. In Figure 4 in red, we observe that detaching is crucial, as otherwise
the network fails to obtain proper performance on the skill library. We conclude
from this that the instability loop can be partly mitigated by making the ϕ
network independent from the Ψ network. This matches with intuition on SFs,
since ϕ simply extracts relevant transition features, and Ψ predicts a sum of ϕ
when following π. Backpropagating the Ψ gradients through ϕ means that we
are constraining our transition features to contain policy information, but also
to somehow contain information about their own sum.

Transfer to target positions We now turn to goal-reaching transfer learning: a
random goal with the 8 provided in grey in Figure 3 is sampled at the start of

A Case for Representation-Based SF in RL 11

0 20000 40000 60000 80000 100000

step

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

E
p

is
o

d
ic

R
ew

ar
d

Training Performance

Representation-Based

Reward-Based

Random Agent

Rep-Based, attach Ψ

0 2000 4000 6000 8000 10000

step

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

E
p

is
o

d
ic

R
ew

ar
d

Goal-Reaching Transfer

Representation-Based

Reward-Based

Random Agent

0 2000 4000 6000 8000 10000

step

0

200

400

600

800

1000

E
p

is
o

d
ic

R
ew

ar
d

Speed Maximization Transfer

Representation-Based

Reward-Based

Random Agent

Fig. 4. Comparing training and transfer performances of a feature-based SF representa-
tion versus a reward-based one. [top right] training performance; [top left] performance
for goal transfer; [bottom] performance for speed transfer(right).

each episode, and the agent needs to maximize the reward2. The only transfer
information provided is the index of the task. We learn the new task vectors w(j)

in both reward-based and representation-based SFs, and apply the GPI. We col-
lect 1K samples to fill up the memory buffer before starting learning, and train
for 10K steps. The results can be observed in Figure 4 (top right). We again
observe very little difference between the reward- and representation-based ap-
proaches. Indeed, the reward library is sufficient in this scenario to approximate
the rewards with good precision. In particular, note that while training perfor-
mance peaked around 95, transfer performance only peaked around 90: this is
due to the relatively weak skill library we used – in general, state-reaching skills
struggle to generalize their behavior beyond the training set; however finding
stronger skill libraries is beyond the scope of this paper. What is of interest to
us here is that both methods can generalize to a new set of goal-reaching tasks
when their transition features were trained on goal-reaching tasks. Both meth-
ods start learning from t = 1K steps and reach their plateau as soon as t = 2K
while learning 8 tasks at the same time. In comparison, the methods reach their
plateau in around 20K steps (starting to learn from t = 2K steps) when learning
the skill library over 5 tasks, which confirms that SF transfer is very efficient.

2 Note that since the goals are closer to the center, it is natural that the Random
Agent performance is stronger.

12 L. Bagot et al.

Transfer to target speeds The main result of our paper is presented on the bottom
row of Figure 4, comparing the speed-maximization transfer of reward-based and
representation-based SFs. Following our intuition from Section 3.1, reward-based
SFs are unable to model the new rewards based on the provided reward library,
leading to a failure of the GPI. Even though the skill library seems to be covering
for a lot of behaviors, and certainly for these speed maximization tasks, using
the reward library as features does not allow sufficient expressiveness to transfer
efficiently in this scenario. In comparison, simple auxiliary tasks are sufficient for
representation-based SFs to approximate the speed-based rewards and achieve
strong performance through GPI. We will now provide more intuition into this
difference and the learnt features.

5.4 Visualizations of Learnt Features and Task Vectors

In this section we provide visual intuition for the performance of representation-
based SFs. For all of these experiments, we use d = 8 to obtain clearer plots; the
performance difference between d = 32 and d = 8 is negligible for our purposes.

It was clear from Figure 4 that a weighted sum of the reward library was not
enough to model the speed-maximization reward. This is perfectly intuitive, since
this reward basis does not contain any information about speed. What were the
transition features learnt by the representation-based method? In order to fully
visualize them, we make use of the low input and feature dimensions to display
all features for varying values of the state values s =

[
θ1, θ2, θ̇1, θ̇2

]
starting

from s0 = [0, 0, 0, 0]. The key factor for ϕ to generalize for speed-based rewards
is the introduction of the auxiliary tasks. To demonstrate this, we visualize
the variations of ϕ (s, ·), with and without auxiliary tasks on Figure 5 (top row;
features averaged over actions). It is very clear that the learning of auxiliary tasks
leads to more expressiveness with respect to the arm speeds: without auxiliary
tasks, the features are nearly independent of θ̇.

In Figure 5 we display the whole reward-approximation process ϕ⊤w = r.
With auxiliary tasks, we can see that the task vector (middle row) puts a high
negative weight on feature ϕ0 and a high positive weight on feature ϕ6. As ex-
pected, ϕ0 inversely correlates with both speeds, while ϕ6 increases with θ̇0 (top
row). The resulting reward prediction (bottom row, blue) is a good approxima-
tion of the ground truth (orange). In comparison, without auxiliary tasks, there
are no obvious features to favor to model a speed-maximization reward, therefore
the prediction fails.

These qualitative results confirm our intuition that by learning auxiliary tasks
and general features, representation-based SFs can better generalize to new tasks
than reward-based SFs with the same skill library.

5.5 Action-wise Feature Regularization

In Section 4.2 we have decided to use independent heads for each action in the
ϕ (s, a) transition features. While this saves time during inference, it comes with

A Case for Representation-Based SF in RL 13

-3.14 -1.57 0.0 1.57

Input 0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

-3.14 -1.57 0.0 1.57

Input 1

-3.0 -1.5 0.0 1.5

Input 0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

-3.0 -1.5 0.0 1.5

Input 1

-3.14 -1.57 0.0 1.57
Input 0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

-3.14 -1.57 0.0 1.57
Input 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

-3.0 -1.5 0.0 1.5
Input 0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

-3.0 -1.5 0.0 1.5
Input 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

0

1

2

3

4

5

6

7

-3.14 -1.57 0.0 1.57

Input 0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

-3.14 -1.57 0.0 1.57

Input 1

-3.0 -1.5 0.0 1.5

Input 0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

va
lu

e

-3.0 -1.5 0.0 1.5

Input 1

w0 w1 w2 w3 w4 w5 w6 w7

5

0

5

10

w0 w1 w2 w3 w4 w5 w6 w7
0.75

0.50

0.25

0.00

0.25

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

r0
Approximation
Ground Truth

0 20 40 60 80 100
0.5

0.0

0.5

1.0

1.5

2.0

r0
Approximation
Ground Truth

Fig. 5. [top] Variations of the learnt features ϕ (s, ·) for varying values of the input
state. Left and right: with and without auxiliary tasks. The learning of auxiliary tasks
adds sensitivity to the velocity of the arms θ̇j (bottom rows), which later allows for
efficient transfer learning. [middle] Associated task vectors w to maximize both speeds.
With auxiliary tasks, the method puts most weight on features −ϕ0 and ϕ6, both of
which increase with the velocities. [bottom] Resulting reward prediction r̂ = ϕ⊤w in
blue for a trajectory of the speed-maximizing task (real reward in orange).

the risk that the different heads will encode information differently, and perturb
Ψ prediction. We compute the average difference between action features over
10K states of random interactions, and plot the resulting distance matrix in the
top row of Figure 6. We compare SFs with and without auxiliary tasks.

We observe that the difference in features is slightly higher with auxiliary
tasks (maximum of 0.3 versus 0.15). Removing auxiliary tasks means that the
features only need to predict the reward library, and goal-reaching rewards are
smooth and do not differ much between actions. Therefore, it is natural that
adding auxiliary tasks should add flexibility action-wise: different actions lead
to quite different outcomes when we include forward prediction. It is interesting
to note that the two maximally distant actions in both cases are a2 and a6, since
they respectively encode torques of [1, 1] and [−1,−1], which are intuitively the
most different actions. Given that the features are constrained in [−1, 1] due
to the tanh activation, we argue that a maximal difference of 0.3 is quite mild,
and evaluate that the learnt features must be coherent between actions. We
qualitatively assess this by plotting ϕ (s0, a) at s0 = [0, 0, 0, 0] (straight arms to

14 L. Bagot et al.

a0 a1 a2 a3 a4 a5 a6 a7 a8

a0

a1

a2

a3

a4

a5

a6

a7

a8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

a0 a1 a2 a3 a4 a5 a6 a7 a8

a0

a1

a2

a3

a4

a5

a6

a7

a8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7
1.0

0.5

0.0

0.5

1.0 (s0, a2)
(s0, a6)

0 1 2 3 4 5 6 7

1.0

0.5

0.0

0.5

1.0 (s0, a2)
(s0, a6)

Fig. 6. [top] Difference in ϕ (s, a) over 10K random states, for (left) representation-
based SFs with auxiliary task learning and (right) without auxiliary tasks. A difference
in maximum 0.3 of the features shows that the actions are self-consistent: this is verified
qualitatively in the [bottom] where we plot ϕ (s0, a) at s0 = [0, 0, 0, 0] (straight arms
to the right with no speed) for the maximally different actions a = 2 and a = 6. The
features are generally close together for both methods.

the right with no speed) for the two maximally different actions, on the bottom
row of Figure 6. We observe that, for both methods, the feature vectors for both
actions are very close to each other, only differing by small amounts on some
features. We therefore conclude that using different action heads for ϕ (s, a) is
not a practical issue in our case, since the different losses act as regularization
to constrain the features to behave similarly.

6 Conclusion

We have identified "reward-based" and "representation-based" features as the
two main branches of a critical design choice in Successor Features: the transi-
tion features ϕ. We have motivated the usage of ϕ (s, a) over other conditioning
choices, and discussed the architecture and training template for representation-
based Successor Features. In a robot arm environment, we have studied transfer
learning to similar tasks (goal-reaching to goal-reaching transfer without goal
information) and to completely different tasks (speed maximization). We have
argued and empirically shown that, although representation-based SFs are prone
to instability issues, they can much more easily transfer to the new task family.
This is achieved through the crucial inclusion of standard auxiliary tasks to aug-
ment the transition features with general information. While auxiliary tasks have
been used in SFs before, to the best of our knowledge this is the first time they
are identified as a crucial generalization tool for applying the GPI in Successor
Feature scenarios. This is also the first time representation- and reward-based

A Case for Representation-Based SF in RL 15

SFs have been defined and compared. Finally, we have provided visual intu-
ition for the transfer performance of representation-based SFs, displaying their
interpretability.

Acknowledgements This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificile Intelligentie (AI) Vlaanderen”
programme.

References

[Bar+17] Andre Barreto, Will Dabney, et al. “Successor Features for Trans-
fer in Reinforcement Learning”. In: Advances in Neural Information
Processing Systems. Vol. 30. 2017.

[Bar+18] Andre Barreto, Diana Borsa, et al. “Transfer in deep reinforcement
learning using successor features and generalised policy improve-
ment”. In: International Conference on Machine Learning. PMLR.
2018, pp. 501–510.

[Bar+19] André Barreto, Diana Borsa, et al. “The option keyboard: Combining
skills in reinforcement learning”. In: Advances in Neural Information
Processing Systems 32 (2019).

[Bar+20] André Barreto, Shaobo Hou, et al. “Fast reinforcement learning with
generalized policy updates”. In: Proceedings of the National Academy
of Sciences 117.48 (2020), pp. 30079–30087.

[Bor+18] Diana Borsa et al. “Universal successor features approximators”. In:
arXiv preprint arXiv:1812.07626 (2018).

[Day93] Peter Dayan. “Improving generalization for temporal difference learn-
ing: The successor representation”. In: Neural computation 5.4 (1993),
pp. 613–624.

[Gel+19] Carles Gelada et al. “Deepmdp: Learning continuous latent space
models for representation learning”. In: International Conference on
Machine Learning. PMLR. 2019, pp. 2170–2179.

[Han+20] Steven Hansen et al. “Fast Task Inference with Variational Intrinsic
Successor Features”. In: International Conference on Learning Rep-
resentations. 2020.

[Jad+17] Max Jaderberg et al. “Reinforcement Learning with Unsupervised
Auxiliary Tasks”. In: International Conference on Learning Repre-
sentations. 2017.

[Jan+19] David Janz et al. “Successor uncertainties: exploration and uncer-
tainty in temporal difference learning”. In: Advances in Neural In-
formation Processing Systems 32 (2019).

[Kul+16] Tejas D Kulkarni et al. “Deep successor reinforcement learning”. In:
arXiv preprint arXiv:1606.02396 (2016).

[LL20] Lucas Lehnert and Michael L Littman. “Successor Features Combine
Elements of Model-Free and Model-based Reinforcement Learning.”
In: J. Mach. Learn. Res. 21 (2020), pp. 196–1.

16 L. Bagot et al.

[Mac+18] Marlos C Machado, Clemens Rosenbaum, et al. “Eigenoption Discov-
ery through the Deep Successor Representation”. In: International
Conference on Learning Representations. 2018.

[MBB20] Marlos C Machado, Marc G Bellemare, and Michael Bowling. “Count-
based exploration with the successor representation”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020,
pp. 5125–5133.

[MBP21] Marlos C Machado, Andre Barreto, and Doina Precup. “Temporal
abstraction in reinforcement learning with the successor representa-
tion”. In: arXiv preprint arXiv:2110.05740 (2021).

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforce-
ment learning”. In: nature 518.7540 (2015), pp. 529–533.

[MWB18] Chen Ma, Junfeng Wen, and Yoshua Bengio. Universal Successor
Representations for Transfer Reinforcement Learning. 2018.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. Second. 2018.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics
engine for model-based control”. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2012, pp. 5026–5033.

[Zha+17] Jingwei Zhang et al. “Deep reinforcement learning with successor fea-
tures for navigation across similar environments”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
2017, pp. 2371–2378.

[Zhu+17] Yuke Zhu et al. “Visual semantic planning using deep successor rep-
resentations”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 483–492.

[ZLZ20] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. “Transfer Learning in
Deep Reinforcement Learning: A Survey”. In: CoRR abs/2009.07888
(2020).

A Hyperparameters

Hyperparameter Value
Discount factor γ 0.9
Feature dimension d 32
Training starts – skill library/transfer 2K / 1K steps
Target network update period 1K steps
Adam learning rate 0.0005
Activation function tanh
Exploration parameter ϵ 0.1
Auxiliary loss parameter λaux 0.005
Forward/reconstruction balance λfw 0.5

Table 1. List of hyperparameters used

