
WordGraph2Vec: Combining domain knowledge
with text embeddings

Paul Keuren1, Marc Ponsen1, and Ayoub Bagheri2

1 Statistics Netherlands
2 Utrecht University

Abstract. Many domains lack the data required to train a neural net-
work to solve their issues. For the labour market, the matching of Dutch
free-text skills to a predefined taxonomy is such a case where a lack
of examples exist. In this paper, we propose a novel algorithm, Word-
Graph2Vec (WG2Vec) which combines, word embeddings, language mod-
els and the domain knowledge they bear. As a first step, WG2Vec per-
forms a domain-specific cleaning of a sentence before dissecting the text.
The dissection technique relies on dependency tree parsing. From the
dependency graph, a set of domain-specific relations are extracted and
converted to pairs of interest (so-called wordgraphs). Wordgraphs should
represent the important phrases in the (larger) text. As a next step, the
semantics for wordgraphs are obtained using word embeddings models.
WG2Vec uses the resulting embeddings combined with literal one-on-
one matches to compare wordgraphs from skill descriptions with the
ones from taxonomy texts. Analyzing texts both in a grammatical and
semantic level, the WG2Vec algorithm can find matches even if com-
pletely different wordings are used. In our experiments, the proposed al-
gorithm was tested against the state-of-the-art pre-trained models (para-
graph2vec, universal sentence encoding, sentenceBERT). For the given
task of matching skill descriptions from job vacancies and taxonomy
texts, the WG2Vec algorithm outperforms the other methods. An im-
portant side-note of the proposed algorithm is that due to its setup, not
every sentence will be converted to a set of wordgraphs which results
in better interpretability. This beneficiary filtering combined with em-
bedded domain knowledge could explain why the algorithm outperforms
general-purpose algorithms. Additionally, unlike other models, not a lot
of data are required to refine the proposed method. This makes the algo-
rithm interesting for domains where large training sets are not available.

Keywords: Language models, word embedding, sentence embedding,
natural language processing, wordgraph

1 Introduction

It is estimated that the bulk of today’s data is unstructured. This so-called Big
Data contains huge amounts of information relevant to statistical institutes such
as Statistics Netherlands (CBS). A large portion of the data available to CBS is

2 Paul Keuren, Marc Ponsen, and Ayoub Bagheri

categorised and structured by the individual filling out a questionnaire. The issue
with questionnaires is that they capture a fixed set of variables and require a lot
of testing and development before even sending it to the recipients. This process
is slow and labour-intensive. A solution would be to be able to use unstructured
data. One such form of interesting data is in text.

Text analysis is specifically interesting to CBS given the COVID-19 crisis
and its expected impact on the labour market [11]. Due to the expected increase,
there is a need for more insightful and fine-grained statistics. This is made possi-
ble by working together with Dutch Employee Insurance Agency (UWV). UWV
has amassed vacancy texts from multiple sources. The only structure in this data
is the differentiation between a title and a body. Oftentimes the title describes
the job title and the body contains a mixture of company description, skills,
benefits, compensation and so forth. This mixture of information in the body
makes it non-trivial for an algorithm to distinguish between candidate require-
ments and company descriptions. Being able to use this data would help CBS
in improving statistics.

Since text data do not have a predefined structure and might be noisy, deriv-
ing information from texts is challenging. Traditional statistical techniques used
at statistical institutes, are therefore ill-suited to analyse such data. In recent
years, great strides forward have been made in dealing with this type of data,
most notably in the field of data mining, natural language processing (NLP) and
text analytics. To get from text to a statistic, some standardisation has to take
place. This standardisation can be done by trying to fit the text into a knowl-
edge system like a taxonomy. A taxonomy is a non-cyclic directed graph, the
nodes can have different types and contain different data, yet the relations are
not labelled with type information. By moving down the taxonomy, following
the direction of the relations one gets more fine-grained data. Moving up the
taxonomy (against the direction of the relations) one gets more abstract data.
For the labour market, UWV has such a taxonomy of skills.

The task of matching a skill from a vacancy to an item in the taxonomy could
be regarded as a form of translation. The taxonomy is regarded as a more formal
language in comparison to vacancy texts. As such methods which are used for
translation [3, 10] could be applied in this case as well. These algorithms are good
at finding similar words or sentences given enough data. The problem however
lies in the training. As the taxonomy is handcrafted and therefore limited in size,
using it to train a custom variety of these machine learning algorithms is not
feasible. Also, the task of identifying which parts make a good match between
skill texts and taxonomy texts will require a lot of annotations. Given the cost
and limited time of experts, this is deemed to be feasible. Therefore we need an
algorithm which can leverage the similarity knowledge of the machine learning-
based approach and is assisted in finding which parts of a text are relevant to
this domain.

In this paper, we propose a novel algorithmWordGraph2Vec (in short WG2Vec)
to analyse unstructured text data. The proposed algorithm combines two as-
pects of NLP: so-called wordgraphs and word embeddings. First, wordgraphs

WordGraph2Vec: Combining domain knowledge with text embeddings 3

are used to dissect and understand a text on a grammatical level, i.e., what
is the role of words and how do they link to each other? As a next step, the
semantics for a wordgraph are obtained using word embedding models, such as
Word2Vec. Words and phrases will be converted into a vector of numbers, where
the semantic meaning is captured in the numerical vector (i.e., the phrases with
vectors close to each other hold the same semantic meaning). These two steps
are at the core of the proposed WG2Vec algorithm.

We present experimental results that show that WG2Vec outperforms current
state-of-the-art machine learning algorithms for our skill-matching use-case. In
this use-case, we match skills obtained from vacancy texts with validated skills
in an expert system. We compare the matches from either algorithm with expert
annotations made by the UWV.

The goal of this particular use-case is to analyse vacancy texts to support the
UWV in efficiently maintaining their expert system (a labour market taxonomy
of jobs and connected skills). The maintenance of this expert system consists of
two tasks: (1) finding synonyms for existing skills in online texts, and (2) finding
new skills and jobs currently absent in the taxonomy. This up-to-date system
will then create a ‘universal language of jobs and skills’, which is relevant for
both UWV and CBS. For UWV, this allows them to efficiently match supply
and demand on the granular level of skills. CBS, on the other hand, can compute
(timely) demand for specific skills and (potentially future) jobs. Combining this
timely and detailed view of the labour market with the already existing register
data at CBS can potentially provide new insights and statistics for a rapidly
developing labour market.

In this paper, we first review existing work related to our research. This is
followed by our algorithm and how it is used to measure sentence similarity. After
that, we show how the hyperparameters and how the algorithm was measured
and the outcome of the measurements. We conclude with a general overview and
point out possible future research paths.

2 Related Work

In this section, we describe related work on different types of embedding (word
and sentence vectorization) followed by a similar domain issue dealing with
matching in the labour market.

Word vectorization: In literature, there is a lot of focus on embedding
words (Word2Vec [6], Glove [8], BERT [4]). These techniques focus on creating
a vector representation which encompasses the meaning of a word. The vector
representing a word is oftentimes based on a prediction task. Given a sentence
with one masked word the algorithm has to predict the masked word. It can
also be trained the other way around by masking neighbouring words and given
a single word the algorithm has to predict the masked neighbours. These tech-
niques are unsupervised and, given enough data, can result in usable vectors at
a word level. The main shortcoming of these word vectorization methods is that

4 Paul Keuren, Marc Ponsen, and Ayoub Bagheri

a word can have a different meaning in a different sentence. As such the sentence
in which the word is present is of importance.

Sentence vectorization: To take into account the meaning of a sentence
many algorithms build on the word vector algorithms. Examples of these algo-
rithms are Paragraph2vec [5] and Sentence BERT (sBert) [10] and Universal
Sentence Encoding (USE) [3]. Each of these methods has its way of reducing
the list of word vectors to a sentence vector representing its content. The output
for each of the above methods is a vector of a fixed length despite the input
having a fluctuation in the number of words. The techniques are often validated
by comparing sets of curated sentences from multiple domains [2].

Labour market matching: The domain of interest to our research is the
labour market. Specifically the skills and the way they are described from a
vacancy. It shares some problems with job titles as they can also be rather noisy.
The research done by Yamashita et.al. [12] shows how complex the matching
of noisy Job titles is to a standard form. The input to the algorithm already
contains the title and tries to find the closest standard notation. Skill matching
to a taxonomy or standard form is not that often done in literature and differs
from the Job titles.

3 WordGraph2Vec

In this section, we explain the proposed WordGraph2Vec algorithm. It was devel-
oped to detect similarities in text and combines components from the techniques
discussed in the previous section. The first component is word embedding. It
translates words into vectors so that semantic similarities between words can be
measured mathematically. The other component is the language model, specifi-
cally dependency-tree parsing and part-of-speech (POS) tagging. The taxonomy,
available for the use-case of matching skills, is not exploited by our method. This
decision was made to make the method more widely applicable. The combination
of word-embedding with dependency-tree parsing and POS tagging are used to
find relations between words which are of interest to the domain. These combi-
nations between words are called wordgraphs.

The WG2Vec algorithm combines the two components, wordgraphs and word
embedding, in such a way as to detect similarity in text information by joining a
syntactical understanding of sentences with a semantic representation of words.

We will discuss all steps involved in WG2Vec in the following subsections.

3.1 Understanding a Sentence

Sentences can be noisy and complex constructs. They may contain boilerplate
text, which may not give very insightful information about the meaning. Fur-
thermore, people might concatenate sentences, for example:

– “You drive big trucks and cars.”

WordGraph2Vec: Combining domain knowledge with text embeddings 5

Fig. 1: A language model provides additional details on words, such as their word
type (e.g., noun, adjective etc.) and their dependency to other words. WG2Vec
uses this information to extract relevant parts from sentences.

The problem with this sentence is the number of combinations that can
arise from these sentences. The example shown above has two different pieces
of information. Each of these pieces requires a separate analysis to find the best
match. For this reason, WG2Vec first pre-processes sentences and splits them into
elementary parts. This is done based on a rule-based logic that uses information
provided by the language model. The sentence mentioned before could be split
into multiple parts:

– “You drive big trucks.”

– “You drive big cars.”

These elementary pieces of information can be further analysed to better
understand their meaning. Techniques such as Paragraph2vec will incorporate
boilerplate text in their learned sentence embedding[5]. We hypothesise that
better results are obtained once we exclude them. However, pinpointing the
relevant parts of a sentence is not an easy task. WG2Vec uses part-of-speech
tagging with dependency-tree parsing provided by language models [7] to identify
relevant parts in the pre-processed texts.

The method uses this dependency-tree parsing (which is a type of graph,
where the words are nodes and their relations are the edges), the resulting com-
binations of words are named wordgraphs. An additional benefit of this selection
proces is the automatic filtering of stopwords. If a word with a specific role in
a sentence is not of interest, it does not result in a wordgraph, hence explicit
removal of such words is not needed.

Let us give three examples of wordgraphs that were tailored to the labour
market use-case. The reasoning in how the wordgraphs are constructed shows
how expert knowledge is encoded into the system. In this use-case are particu-
larly interested in which skills people have. Therefore, we defined an Activity
wordgraph. A set of two words is an Activity if and only if a VERB refers to a
NOUN, return “VERB NOUN”. The activities in our example sentence are (see
Figure 1):

6 Paul Keuren, Marc Ponsen, and Ayoub Bagheri

– “drive (VERB) trucks (NOUN)”
– “drive (VERB) cars (NOUN)”

Within this activity, we may believe that the noun may hold more or less
relevance compared to the verb. For that reason, we explicitly also define a
Leading wordgraph. So in our example sentence, both ”trucks” and ”cars” are
Leading wordgraphs.

Finally, we might lose specific information when we only focus on VERB-
related information stated above. When the author of a text gave more infor-
mation on a specific noun, he or she did so for a reason. To incorporate this, we
introduced a Specific wordgraph.

A set of two words is a Specific if and only if an ADJECTIVE refers to
a NOUN, return only the “ADJECTIVE NOUN”. If a group of ADJECTIVES
refer to the same NOUN, each ADJECTIVE gets a separate Specific wordgraph.
In our example sentence, this yields the following specifics:

– “big (ADJECTIVE) trucks (NOUN)”
– “big (ADJECTIVE) cars (NOUN)”

It is not always the case that these parts are found in sentences. As fallback
single nouns and verbs are also used as wordgraphs. The selected wordgraphs
are based on this specific use-case, it is possible to concatenate more words into
longer wordgraphs. All these parts are taken into account when representing the
text in vector space, as will be described in the next Section.

3.2 Representing a Sentence as a Vector

In the next step, we convert the wordgraphs to an embedding. The selected
embedding algorithm is Word2Vec [6], although any model could be used to
serve as the basis for the algorithm. For each word in the wordgraph, a vector is
constructed. Wordgraphs containing more words would automatically result in
more vectors for the wordgraph. Let us illustrate using a wordgraph comprising
two words w1 and w2, each with a length of m.

w1 = {a1, a2, a3, .., am}

w2 = {b1, b2, b3, .., bm}

WG2Vec then constructs a new sentence embedding by appending the two
word embeddings, as opposed to the Paragraph2Vec algorithm which concate-
nates or averages them (see Section 2). More specifically, the sentence embedding
for this wordgraph np1 is now of length 2m:

np1 = {a1, a2, a3, ...am, b1, b2, b3, .., bm}

This is an example of a wordgraph consisting of two words. Similarly for a
wordgraph with a single word a vector is constructed with a vector of length m.
Based on expert knowledge, the following wordgraphs were used:

WordGraph2Vec: Combining domain knowledge with text embeddings 7

1. specific: each noun with an adjective
2. activity: main verb with object (noun)
3. leading: object of the main verb
4. noun: every noun in the sentence
5. verb: every verb in the sentence

Both the specific and the activity consist of two words, the others are one word
per wordgraph. In the domain of skills matching, a recruiter will only add ad-
jectives if they add to the noun (according to the domain expert, adjectives are
rarely added to spice up the text). For instance, the skill ”Python programming”
differs greatly from ”neuro-linguistic programming”. The activity wordgraph is
based on the assumption that the essence of a skill is performing an action, a
verb, on or with an object, the noun. Different domains might require different
wordgraphs however, this does not change the algorithm.

3.3 Defining Sentence Similarity using WordGraph2Vec

The previous subsection illustrates how texts are transformed into a numeric
vector by WG2Vec. The varying lengths of the vectors require a different ap-
proach when comparing them to each other (to determine semantic similarity).
Here we describe a similarity function that can deal with the proposed (variable
length) wordgraphs. One such similarity function for WG2Vec is denoted in Al-
gorithm 1. This algorithm takes two (simplified) sentences as input that will be
transformed into wordgraphs, as described in Section 3.1.

The similarity is then based on exact (textual) matches of parts, with the so-
called overlap score (see lines 6 and 7), as well as semantic similarity on different
parts with the difference score (see lines 8 to 17).

Different elements are vectorized as described in 3.2. Cosine similarity gives
the similarity (see line 15) for wordgraphs of the same type (and therefore of the
same length). Note that, we provided a kernel K per wordgraph, which allows us
to weigh the different words. For example, in the activity (i.e., a related verb and
noun pair) the kernel may specify that the noun part is more relevant by multi-
plying the corresponding numbers in the vector with a specified value. A higher
value would make that part more relevant when comparing. Per wordgraph, the
addition of overlap- and difference score, weighted by the so-called Vector Kernel
N , leads to the final score. To be more precise, the wordgraph kernel weighs the
words in the wordgraph, whereas the vector kernel weighs the relative impor-
tance of vectors. Once all (weighted) overlap- and difference scores are processed,
the final score gives the similarity between the two sentences. Higher numbers
represent better matches.

4 Experimental Study

In this section we will elaborate on our learning task, i.e., finding matching skills
between vacancy texts and a taxonomy. We will then provide more details on the
data and algorithms used in the experiments. Next, we will describe the metrics
used for benchmarking the algorithm. We conclude with the experimental results.

8 Paul Keuren, Marc Ponsen, and Ayoub Bagheri

Algorithm 1 Similarity scoring algorithm used by WordGraph2Vec.

Require: Word2vec w2v, Wordgraph Types W , Wordgraph Kernel K, Vector Kernel
N

1: function WG2V Similarity(Sentence S1, Sentence S2)
2: final score← 0
3: For each word graph type w ∈W do
4: A← S1[w]
5: B ← S2[w]
6: overlap score← |A

⋂
B|

7: asymmetric A← (A−B)
8: asymmetric B ← (B −A)
9: difference score← 0
10: For each word graph a ∈ asymmetric A do
11: score← 0
12: For each word graph b ∈ asymmetric B do

13:
−→
Va ← w2v(a)

14:
−→
Vb ← w2v(b)

15: score← max(score, cosine similarity(
−→
Va,
−→
Vb))

16: end for
17: difference score← difference score+ score ·Nw

18: end for
19: final score← final score+ (overlap score+ difference score) ·Kw

20: end for
21: return final score
22: end function

4.1 Data

In the experimental study, we use two distinct sources of data. The first source is
the taxonomy. The taxonomy is a handcrafted hierarchy maintained by a group of
experts. It comprises different types of relevant concepts and abstraction levels.
For the current research, only the lowest level text of a skill is used. Meaning
the input to the algorithm from the taxonomy is a simple table with a skill
identification and a text belonging to the skill. Some skills have the same texts,
towards the algorithm this is simplified by only considering the unique skills
resulting in 4676 skill descriptions. This is the set of data towards the algorithm
needs to match.

The other source of data is the set of vacancies. This source differs greatly
from the taxonomy. Firstly, the skills are less formal in their wording. Instead of
describing the essence of the activity, it is often made more popular for instance
”Programmeren in Python” (Coding in Python) would read ”Je spreekt vloeiend
Python” (You speak Python fluently)3. Secondly, the vacancies do not have a
fixed predefined format for skills. This means they need to be extracted from the
vacancy text before matching. This extraction is done by using a set of regular
expressions. Resulting in fragments that should contain the part of the sentence
with the skill description. Due to the nature of the extraction, it is possible that
a sentence lacks important parts (e.g. the main verb of a sentence) and could be

3 Literal translation.

WordGraph2Vec: Combining domain knowledge with text embeddings 9

unusable to the matching algorithm. Similar to the taxonomy items vacancies
can describe a skill in an identical way to another vacancy. To only match a skill
once, only the distinct texts are used resulting in a total of 84460 vacancy skills.

To check for the correctness of the algorithms a set of annotations is made
by experts. These experts (the same as the ones maintaining the taxonomy)
matched extracted skill texts to the taxonomy. They could mark a text as de-
scribing multiple skills (or unmatchable), not having a skill, or fitting to one
taxonomy item. This resulted in a total of 1928 annotations of which a total of
626 were matched on taxonomy items. It is important to note that the users
do not rank or quantify the match in any form (similar to the research done by
Radlinski and Craswell [9]). Next to the limiting factors of the annotations, the
number of unique classifications brings the total down to 612. This uniqueness
is required as a skill could be presented multiple times to a different expert and
could be matched to a different taxonomy item (with identical text).

4.2 Hyperparameters

The previously mentioned annotation count is but a fraction of the number of
examples used to train BERT models[4, 10]. As such, training complex models on
this data is currently not feasible. Due to the limited data source, in this study,
both the initial setup (Algorithm 1) as well as the best matching algorithm are
to be measured.

The WG2Vec algorithm has two main hyperparameters: Wordgraph kernel
and Vector Kernel. These hyperparameters influence the weight of each word-
graph type and underlying vectors. For the wordgraphs an initial estimate was
made, this can be seen in Table 1. This initial estimate involved running the
algorithm against a sample of the data and adjusting the values accordingly.
Later a random search for the best configuration of the hyperparameters was
used [1].

4.3 Evaluation Metrics

To evaluate all algorithms equally a coarse metric is used to measure the quality.
These metrics are based on the case of users wanting to minimize the amount of
unmatchable and unusable skills and maximise the number of top K hits (where
due to the user interface, the value of K is set to 5). Given the use-case there
are multiple quality criteria:

1. Percentage of matchable skills
2. Precision@N[12]

Given that many algorithms have a fixed dictionary [6, 8, 10], it is important to
measure how well the algorithms can fit the given words.

The first quality (Q1) criterion is measured by counting the number of skills
which can be used for the matching process divided by the total number of avail-
able skills. The value for Q1 is computed by the formula depicted in equation 1.

10 Paul Keuren, Marc Ponsen, and Ayoub Bagheri

algorithm nr. 1 74

Wordgraph Kernel

leading 1.0 5.0
activity 14.0 9.0
specific 19.0 1.0
noun 5.0 0.0
verb 2.0 8.0

Vector Kernel

leading [1] [1]
activity [15,19] [5,6]
specific [16,14] [7,9]
noun [1] [1]
verb [1] [1]

Table 1: Kernel values for the initial algorithm (1) and the best performing al-
gorithm (74). The vector kernel is shown different from what is suggested in the
algorithmic outline 1. As wordgraph vectors comprise one or multiple embed-
dings, each embedding is multiplied with its own weight. So with a wordgraph
consisting of two embeddings each part is multiplied with its own scalar. This
matrix shows these scalar values.

In this formula, the ||S|| is the number of skills to be matched, with S being the
set of skills and s as a specific skill. The function V (s) is a check to see whether
the given skill s can be used in matching.

Q1 =

∑S
s V (s)

||S||
(1)

This metric intends to get a view of how broad the number of acceptable skills
is. If the percentage is high, this indicates the method can use more skills than
if the percentage were lower.

The second criterion, Precision@N, is measured by looking into the fraction
of the usable results. A result is usable if the match given by the user is present
in the top k hits from the algorithm. As such the formula is as follows:∑S

s ||∃p{p ⊂ Top(P (s), k)|p = u}||∑S
s V (s)

(2)

Where P is the algorithms prediction function, the Top(list, x) only takes the
best k results from the list, and u is the annotation from the user. The function
V () is the same as in the first quality measurement. The k value for the research
is set at 5 due to the user interface shown for evaluation to users. This metric
intends to get a feeling for how good the predictions fit the user’s expectations.

4.4 Experimental Results and Discussion

Using the previously defined criteria each algorithm is tested on the same data.
The results of the tests can be seen in Table 2. The results were obtained by
predicting the correct match.

WordGraph2Vec: Combining domain knowledge with text embeddings 11

Algorithm Response ratio Precision@5

WG2Vec [74] 0, 804% 7, 07%

WG2Vec [1] 0, 804% 6, 92%

USE 100% 0, 178%

sBert 100% 3, 08 ∗ 10−2%

Paragraph2Vec 100% 1, 18 ∗ 10−3%

Table 2: Results sorted by Precision@5 column.

The results show that the WG2Vec algorithm trades response for precision.
The algorithm cannot find wordgraphs in all sentences and is further limited by
the Word2Vec dictionary. Oftentimes these sentences are bad extractions done
by the regular expressions (they lack the main verb). This results in a smaller
set for which the algorithm can find matches compared to the other techniques.
When it comes to the Precision@N of the algorithm the WG2Vec outperforms
the others. Here it can be observed that the algorithm if it can find matches,
has a better understanding of what is important to the user.

By looking into specific responses, the differences between the methods be-
come clearer (shown in Table 3). This table shows that the responses given by
Paragraph2vec appear to be almost random (not a single word meaning appears
to fit). sBert performs better, some results do make sense but many appear al-
most as random as Paragraph2vec. This might be due to missing words in sBert’s
vocabulary combined with its attention being focused on the wrong parts of the
sentence. USE performs better than the aforementioned methods. The top hit
of USE is rarely random, albeit often not the correct item. The main issue with
USE is in identifying the essence of the skill. This issue is shown in the first ex-
ample, the sentence describes transporting liquid, and USE finds a match with
transportation across water. The link might seem relevant, but the implications
are different (one requires a drivers license, the other a boat license).

Vacancy tekst Je vervoert immers vloeibare lading

WG2Vec [74] Zware ladingen verhuizen
USE Zware vrachtstukken over de binnenwateren vervoeren
sBert Gevaarlijke stoffen vervoeren

Paragraph2Vec Adviseren over planologie en volkshuisvesting

Vacancy tekst Je toetst aanvragen in het kader van bouw wet- en regelgeving

WG2Vec [74] Klanten juridisch advies geven
USE Toegang tot archieven regelen rekening houdend met wet- en regelgeving
sBert In een team werken

Paragraph2vec Producten na bereiding verpakken

Vacancy tekst Je komt het afval ophalen

WG2Vec [74] Gevaarlijk afval sorteren en afvoeren
USE Afval vernietigen
sBert Toezichthouden op veiligheid en kwaliteit

Paragraph2Vec Omlijstingen maken

Table 3: Best skill matches performed by the different algorithms.

12 Paul Keuren, Marc Ponsen, and Ayoub Bagheri

The examples shown in Table 3 also show the complexity of the task. Finding
the right match between skills in the different sources also requires knowledge of
the implications from the text. If enough data would be present on this mapping,
a machine learning algorithm could be used to build an embedding of these
implications.

5 Conclusions and Future Work

In this paper, we proposed a novel algorithm called WG2Vec. The goal of the
algorithm is to improve matching skills to an existing taxonomy. The algorithm
dissects a sentence to a set of wordgraphs using dependency tree parsing and
part-of-speech tagging. For each wordgraph, it creates vectors using Word2Vec.
Using a comparison between the wordgraphs from a skill and an item in the
taxonomy a match is made.

The metrics do not show a clear winner for every scenario. Although WG2Vec
has a higher number of valid matches, the number of sentences usable for the
method is relatively low. More research is needed to improve it to acceptable
values. The large difference in the Precision@5 metric does show that the state-
of-the-art can be improved upon by specifically engineered methods. For the
current scenario of finding the highest number of valid hits, WG2Vec does a
better job than the competition.

For future iterations, the underlying word embedding model could be sub-
stituted by the USE algorithm. Given that it is the best alternative method it
could improve the Precision@5 score of the algorithm.

Instead of the more dedicated feature engineering, a BERT model could be
trained to the data. By letting the BERT model try and predict the taxonomy
item it could learn a more relevant representation. It is important to note that
this would require more data than is currently available.

Another significant improvement would come from altering the initial step
of sentence selection. By giving more complete sentences to the algorithm it (or
the alternatives) might get a better Precision@5 score.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. 13(2)
(2012)

2. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: SemEval-2017 Task 1:
Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation. In:
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-
2017). pp. 1–14. Association for Computational Linguistics, Vancouver, Canada
(August 2017). https://doi.org/10.18653/v1/S17-2001

3. Cer, D., Yang, Y., Kong, S.y., Hua, N., Limtiaco, N., John, R.S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y.H., Strope, B., Kurzweil, R.:
Universal Sentence Encoder (April 2018), http://arxiv.org/abs/1803.11175

WordGraph2Vec: Combining domain knowledge with text embeddings 13

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding (May 2019),
http://arxiv.org/abs/1810.04805

5. Le, Q.V., Mikolov, T.: Distributed Representations of Sentences and Documents
(May 2014)

6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Rep-
resentations in Vector Space (September 2013), http://arxiv.org/abs/1301.3781

7. Montani, I., Honnibal, M., Honnibal, M., Van Landeghem, S., Boyd, A., Pe-
ters, H., McCann, P.O., Geovedi, J., O’Regan, J., Samsonov, M., Altinok,
D., Orosz, G., De Kok, D., Kristiansen, S.L., Miranda, L., Bot, E., Roman,
Baumgartner, P., Fiedler, L., Hudson, R., Kannan, M., Edward, Howard, G.,
Phatthiyaphaibun, W., Tamura, Y., Bozek, S., Murat, Daniels, R., Flusskind:
Explosion/spaCy: V3.4.1: Fix compatibility with CuPy v9.x (July 2022).
https://doi.org/10.5281/ZENODO.1212303, https://zenodo.org/record/1212303

8. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. pp. 1532–1543 (2014)

9. Radlinski, F., Craswell, N.: Comparing the sensitivity of information retrieval met-
rics. In: Proceeding of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval - SIGIR ’10. p. 667. ACM Press, Geneva,
Switzerland (2010). https://doi.org/10.1145/1835449.1835560

10. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks (August 2019), http://arxiv.org/abs/1908.10084

11. Statistics Netherlands: Vacatures. https://www.cbs.nl/en-
gb/visualisations/labour-market-dashboard/vacatures?sclang = nl−nlscitemid =
39df8938− f4b9− 493b− 8d13− 309a51e6f4f2(July 2022)

12. Yamashita, M., Shen, J.T., Ekhtiari, H., Tran, T., Lee, D.: JAMES: Job Title Mapping
with Multi-Aspect Embeddings and Reasoning (Feb 2022)

