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1 Introduction

The goal of one-class classification is to predict membership of a target class
purely on the basis of positive training records. Nonetheless, for some applica-
tions a certain number of negative records may be available that can be used
to optimise the hyperparameter values of a given data descriptor (or one-class
classifier). This is true in particular when data descriptors are used as building
blocks in a multi-class classification ensemble.

The performance of data descriptors with hyperparameter optimisation has
previously only been evaluated using grid search [4, 15]. In our paper, we evaluate
a number of different optimisation algorithms, employ a large number of 246
one-class classification problems drawn from 50 datasets, and include Average
Localised Proximity (ALP), a data descriptor recently proposed by us that has
good performance with default hyperparameter values [8].

2 Data descriptors

In addition to ALP, we compare the Nearest Neighbour Distance (NND) [6], Lo-
calised Nearest Neighbour Distance (LNND) [13], Local Outlier Factor (LOF) [2]
and Support Vector Machine (SVM) [16, 14] data descriptors. For NND, LNND
and LOF, we optimise a single hyperparameter, while for ALP and SVM we
optimise two hyperparameters. The optimisation goal is to maximise the area
under the receiver operator characteristic (AUROC). For NND, LNND and ALP,
we can perform efficient leave-one-out validation, while for SVM and LOF, we
use (nested) five-fold cross-validation. For NND, LNND, ALP and LOF, we can
reuse nearest neighbour queries, greatly reducing the run time of each optimisa-
tion step.

3 Optimisation algorithms

The algorithm that performs best overall is Malherbe-Powell optimisation [5],
which alternates global and local optimisation steps. The global optimisation
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steps, based on the AdaLIPO algorithm [10], operate with the assumption that
the problem function is k-Lipschitz, for some positive k, indicating essentially
the maximum steepness of the problem function. Given this assumption, the
algorithm explores those parts of the function space with the highest potential
improvement over the current optimum, and increases k if a newly evaluated
value violates the working assumption. The local optimisation steps exploit the
neighbourhood of the current optimal value, using the BOBYQA algorithm [12].

The other optimisers that we compare are the global (Bayesian) algorithms
of Kushner-Sittler [7] and Bergstra-Bardenet [1], the local algorithms of Nelder-
Mead [11] and Hooke-Jeeves [3], as well as random search.

4 Experiments and results

For all data descriptors, Malherbe-Powell optimisation produces the highest
validation AUROC, except NND, for which it is virtually tied with Bergstra-
Bardenet optimisation. NND is relatively easy to optimise, while LNND and
SVM are relatively hard. When we compare validation and test AUROC, we
find that all data descriptors display a degree of overfitting, especially LNND
and LOF, but this reduces with dataset size. Looking at test AUROC obtained
with Malherbe-Powell optimisation, the data descriptors approach their final
scores (after 50 evaluations) to within 0.001 points after respectively 5 (NND),
10 (LNND and LOF), 13 (ALP) and 37 (SVM) evaluations.

After a handful of optimisation steps, test AUROC of all data descriptors is
significantly higher than with their default hyperparameter values. After 50 opti-
misation steps, ALP and SVM significantly outperform LOF, NND and LNND,
and LOF and NND outperform LNND. Further analysis reveals that ALP has
a slight advantage over SVM with problems that admit a good solution, while
SVM performs relatively better with problems that do not.

5 Conclusion

The performance of ALP and SVM is comparable, but ALP can be optimised
more efficiently and so constitutes a good default choice. Alternatively, using
validation AUROC as a selection criterion between ALP or SVM gives even
higher performance, while NND is a less computationally demanding option. We
thus end up with a clear trade-off between three options, allowing practitioners
to make an informed decision.
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