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Abstract. Bayesian networks offer an efficient, factorized representa-
tion of a joint probability distribution over a set of random variables,
and are as such a prominent tool for AI applications that need to rep-
resent and reason under uncertainty, such as clinical decision support
systems. An obstacle towards practical applicability is the lack of a fun-
damental and systematic way of extending the network (and thereby the
joint probability distribution) with new variables. In this short paper
we introduce the concept of inverse marginalisation and propose some
preliminary ideas on how to define a novel (extended) joint probability
distribution as a linear program.
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1 Introduction

Bayesian networks are a sound and efficient way to represent a joint probability
distribution over a set of stochastic variables. Given a Bayesian network, all
posterior (joint) probabilities of interest can be computed in a straightforward
manner; the network structure and conditional probabilities allow for human-
readable and transparent representation of uncertain knowledge. These are all
reasons why Bayesian networks are often the underlying computational structure
in clinical decision support systems (CDSSs).

A shortcoming of Bayesian networks, particularly when they are used as
a formalisation of a clinical model used by a CDSS, is that they are difficult
to maintain. When a Bayesian network has been constructed, trained on data,
and/or elicited from domain experts, it is far from trivial to add new knowledge
while maintaining the integrity of the network. This is an important shortcom-
ing in contexts that require flexibility when new medical guidelines arrive or
new clinical studies become available. While several algorithmic approaches to
(e.g.) integrating data sets with dissimilar variables have been proposed in the
literature (see Section 1.1) their mathematical basis is still weak.

When it comes to specifically expanding a Bayesian network, we can distin-
guish conceptually different situations [5, 6]:

– introduce an additional value of a stochastic variable in the form of a new
value in the domain of the variable (e.g., a new treatment method)



2 J. Kwisthout

– introduce an additional value of a stochastic variable by splitting an existing
value into two (e.g., start to discriminate between two related symptoms
that were previously grouped)

– introduce an additional stochastic variable when a new concept needs to be
introduced due to changed domain knowledge or purpose of a CDSS (e.g.,
include Quality of Life in addition to Survival Rate in a model)

– introduce an additional new stochastic variable to refine an existing concept
with more details (e.g., include Rhesus Factor in addition to Blood Type)

In Section 4 we will further elaborate on the differences between these situa-
tions and the consequence for the possibility to formulate them in a sound and
coherent way.

1.1 Related work

In [5], the authors offer, from a cognitive stance, a computational-level descrip-
tion of what can be revised in a generative model (formalized as a Bayesian
network). Here generative models (mathematically described as Bayesian net-
works) are assumed to describe learned stochastic relationships between causes
and effects; the authors describe in what sense these networks can be systemat-
ically adjusted (to model, for example, the effect of drug rehabilation on one’s
internal beliefs and assumptions). In contrast, [6] offers algorithmic approaches
specific to learning network structure and parameters from distinct data sets, in
the context of clinical decision support systems. The latter paper summarizes
and extends earlier work where some aspects of model expansion are covered.
For example, [7] merges old sufficient statistics with new sufficient statistics to
facilitate incremental batch learning when new variables arise. Older work like
[2] focuses on merging different sources for learning when later information has
only a subset of the variables.

In contrast to these approaches, in the current short note we aim to offer
a sound mathematical account of the effect of adding a value to the domain
of a stochastic variable, or adding a stochastic variable to a joint probability
distribution, with the (future) aim to interpret and compare existing and novel
algorithms for model expansion within a common mathematical framework.

1.2 Our contribution

The crucial aspect in our approach is the notion of inverse (partial) marginal-
isation to capture expansions of variables and joint distributions. For this, we
introduce in Section 3 the notion of a partial marginalisation as extension to
the familiar marginal distribution. Expanding a joint distribution can always be
formulated as taking the inverse of a marginal distribution. In contrast, adding
a value to the domain of a variable can be either invertible or non-invertible.
In the first case this operation can also be characterized systematically as an
inverse partial marginalisation; in the latter case this is in principle not possible.
Out approach is further explicated in Section 4.
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In the remainder of this short paper, we introduce formal preliminaries and
notation in Section 2. We introduce partial marginalisation in Section 3; formal-
ising network extension as inverse marginalisation is introduced in Section 4. In
Section 5 we discuss how to formalise constraints on the novel joint distribution
as a linear program. We conclude in Section 6.

2 Preliminaries and notation
A joint probability distribution Pr over a set of discrete random variables V is
a function Pr : ξ → [0, 1] on a Boolean algebra ξ of propositions spanned by V
for which the following conditions hold [1]:

– 0 ≤ Pr(a) ≤ 1, for all a ∈ ξ;
– Pr(⊤) = 1;
– Pr(⊥) = 0;
– for all a, b ∈ ξ, if a ∧ b ≡ ⊥ then Pr(a ∨ b) = Pr(a) + Pr(b).

Let V and W denote two joint probability distributions such that the variables
constituting W form a subset of the variables constituting V and Pr(W =
w) =

∑
x∈Ω(V\W) Pr(V = w ∧ x). Then we will call Pr(W) a sub-distribution

of Pr(V) and Pr(V) a super-distribution of Pr(W).
A (discrete) Bayesian network B is a graphical structure that efficiently

factorizes Pr(V) and graphically depicts the conditional independences within
Pr(V) [4]. B includes a directed acyclic graph GB = (V,A), modeling the vari-
ables and conditional independences in the network, and a set of parameter
probabilities Pr in the form of conditional probability tables (CPTs), captur-
ing the strengths of the relationships between the variables. The network thus
factorizes a joint probability distribution Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its

variables, where π(Vi) denotes the parents of Vi in GB.
Our notational convention is to use upper case letters to denote individual

nodes in the network, upper case bold letters to denote sets of nodes, lower case
letters to denote value assignments to nodes, and lower case bold letters to denote
joint value assignments to sets of nodes. The set of values vi that constitute the
domain of a variable V is denoted as Ω(V ); this notation is extended to the set
of joint value assignments Ω(V).

3 Partial marginalisation
A marginalisation operation maps a super-distribution V to a sub-distribution
W by marginalizing out the variables in V \W as per the definition above. We
define a partial marginalisation as a generalisation of this operation as follows.
Definition 1 (Partial marginalisation). Let V be a discrete stochastic vari-
able with Ω(V ) = {v1, . . . , vm} its domain of values. Let BΩ(V ) be the set of
partitions of Ω(V ). Let P ∈ BΩ(V ) be a k-partition {v1, . . . ,vk} of Ω(V ), with
Pr(vi) =

∑
vj∈vi

Pr(vj). Finally, let V P be stochastic variable formed as follows
from V relative to partition P:
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– Ω(V P) = {vP1 , . . . , vP} = {v1, . . . ,vk}
– Pr(V P = vPi ) = Pr(vi) =

∑
vj∈vi

Pr(vj)

We call this operation on V , resulting in V P , a partial marginalisation of V
relative to P.

Observe that if P = {{x} : x ∈ Ω(V )} this transformation effectively marginalises
out V .

4 Bayesian network expansion as inverse marginalisation

In marginalisation, we sum out a variable from a joint distribution to keep a
distribution over variables of interest, without assigning a value to this other
variable. For example, if we have a joint distribution over the variables blood
type BT = (A,B,AB,O) and Rhesus factor Rh = (+,−) we might be interested
in the relative probability of each blood type, independent of the Rhesus factor.

However, let’s assume our model contains BT , but does not specify the Rhe-
sus factor. If we were to introduce Rh as an additional variable, we would need
to split, e.g., Pr(BT = A) into Pr(BT = A,Rh = +) and Pr(BT = A,Rh = −)
such that Pr(A,+) + Pr(A,−) = Pr(A). This can be seen as the inverse of
a marginalisation, notation Pr(BT,Rh)

def
=

∑−1
Rh Pr(BT ), with the above con-

straint on the joint probability distribution Pr(BT,Rh).
Note that we may assume that the original probability distribution Pr(BT )

represents both Rh = + and Rh = − values, collated in a single distribution.
In contrast, a conceptually different situation would be the hypothetical (and
counter-factual) situation where the genetic adaptation of an absent Rh protein
(i.e., negative Rhesus factor) only recently occurred and, as a consequence, the
difference between Rh = + and Rh = − is only now relevant to model. Then, we
may assume that in the original probability distribution Pr(BT ) only Rh = +
values are represented. The bottom line here is that, while the inverse marginal-
isation is a one-to-many mapping, it is often possible to constrain the resulting
probability distribution based on background information. In section 5 we will
further explore potential requirements on Pr(BT,Rh).

What happens if we do not add a variable, but add a value to the domain
of an existing variable? Here the crucial question is whether this operation can
be formulated as inverse partial marginalisation or not; that is, whether the
addition leads to the ‘splitting’ of the probability mass of a single value in two
(or more) parts (the invertible case) or whether the addition really leads to a
complete reallocation of the probability mass. See the examples below.

Example 1. Assume we have a Bayesian network with a ternary random variable
Q, with values 1, 0, and X, indicating the state of an S/R latch (logical 1, logical
0, invalid Q′Q combination). Assume that we want to add the latching state L
which is the specific value assignment Q′ = Q = 0 and reserve X to the illegal
state Q′ = Q = 1. Here, the original probability mass Pr(Q = X) is split into
Pr(Q = X ′) and Pr(Q = L).
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Here, we can see the addition of L (de facto splitting of X) as an inverse
partial marginalisation of Q, with partition P = {{0}, {1}, {X,L}} of Ω(Q);
notation Pr(Q′)

def
=

∑−1
P Pr(Q). Now constrast this with the following example.

Example 2. Assume we have a Bayesian network with a binary random variable
A, with values H and L, indicating the voltage state of an input pin A (high or
low), with Pr(A = H) = 0.55 and Pr(A = L) = 0.45. We want to adjust this
variable to include the floating state Z and adjust the distribution to Pr(A =
H) = 0.5, Pr(A = L) = 0.4, Pr(A = Z) = 0.1.

Here, the addition of Z can not be seen as an inverse partial marginalisation,
and as a consequence this adjustment of Pr(A) cannot be characterized in a
similar vein.

4.1 Factored representations

Until now we explored inverse (partial) marginalisation of a full joint probabil-
ity distribution. Obviously, when adding a variable to a Bayesian network B,
we want to make use of the independences in B rather than revise the entire
joint probability distribution Pr and then recompute the CPTs. Hence, we need
a factored representation where, in addition to the constraints on the resulting
probability distribution as mentioned before, also additional conditional inde-
pendences (with respect to the added variable) are taken into account as Figure
1 shows.

BT

D D

Rh BT

BCBC

Fig. 1: (left) Example of a Bayesian network modeling the dependency of blood
type (BT ) on being a blood donor (D) and on risk of developing blood clots
(BC). When extended with a variable Rh (right), the CPT for D should be
locally adjusted (according to the inverse marginalisation concept) yet the CPT
for BC should remain the same.

Here we expand Pr(BT,D,BC) = Pr(BT ) × Pr(D | BT ) × Pr(BC | BT )
to Pr(BT,Rh,D,BC) = Pr(Rh) × Pr(BT ) × Pr(D | BT,Rh) × Pr(BC | BT );
using an inverse marginalisation Pr(Rh)×Pr(D | BT,Rh)

def
=

∑−1
Rh Pr(D | BT ).

This applies similarly for invertible value addition in a factored represen-
tation. We hypothesize, but were not able to prove in this paper, that inverse
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marginalisation can be locally applied soundly in case of a factored representa-
tion, assuming knowledge on the resulting independences in the network, as in
the above case.

5 Setting the novel CPTs

As indicated above the new distributions (and correspondingly, CPTs) need to
be set, which is a one-to-many problem: There are infinitely many probabilities
Pr(bi) such that

∑
bi∈Ω(B) Pr(bi) = 1 holds. However, background information

about the nature of the addition, and on the conditional probabilities that hold
after addition of a variable to a network, can help constrain the set of possible
probability mass assignments.

One way of formalising that might be in the form of a linear program, where
the constraints are defined by the laws of probability theory (e.g., ∀i

∑
j

Pr(ai, bj) =

Pr(ai), i = 1, . . . , |Ω(A)|, j = 1, . . . , |Ω(B)|). The objective function would then
be to minimize the Kullback-Leibler divergence between the distribution Pr(V) =∏n

i=1 Pr(Vi | π(Vi)) and an expected target distribution Pr(Q), which is based
on a Dirichlet prior Dir(α) that represents the available information, based on
the nature of the adjustment, taking the maximum entropy principle into ac-
count. For example, in the absence of any information regarding Pr(bj) we should
set the hyper-parameters α of Pr(B) to 1. Additional information can then be
encoded in these hyper-parameters. A completely orthogonal angle might be to
encode desired properties of the new CPTs by means of algebraic constraints on
structural equation models [3].

6 Conclusion

In this short note we proposed a mathematical characterization of the problem
of extending a Bayesian network with a new variable or value of a variable.
This, of course, is just a first initial step of a more elaborate treatment where
existing (and future) actual algorithms and approaches that effectively require
such expansion (as when a new data set emerges that contains more variables
than the existing model with which it is to be integrated) are examined with
respect to the formalism.

The approach to model CPT adjustment as a linear program, minimizing the
difference between the target distribution and a Dirichlet prior that represents
the available information on the desired distribution allows for representing a
variety of constraints. In addition to the obvious constraints (the CPT entries
must represent a valid distribution) additional desired properties with respect
to, e.g., sensitivity towards an output variable of interest might be added. This,
however, is left out for future research.
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