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Abstract. We define Location Category Inference (LCI) as a task of
predicting the category of a visited venue, such as bar, restaurant or
university, given user location GPS coordinates and a set of venue can-
didates. LCI is an essential part of the hyper-personalization systems as
its output provides deep insights into user lifestyle (has children, owns a
dog) and behavioral patterns (regularly exercises, visits museums). Due
to such factors as signal obstruction, especially in urban canyons, the
GPS positioning is inaccurate. The noise in the GPS signal makes the
problem of LCI challenging and requires researchers to explore models
that incorporate additional information such as the time of day, duration
of stay or user lifestyle in order to overcome the noise-induced errors. In
this paper we propose an embeddable on-device LCI model which fuses
spatial and temporal features. We discuss how initial clustering of lo-
cations helps limiting the GPS noise. Then, we propose a multi-modal
architecture that incorporates socio-cultural information on when and for
how long people typically visit venues of different categories. Finally, we
compare our model with one nearest neighbor, a simple fully connected
neural network and a random forest model and show that the multi-
modal neural network achieves f1 score of 73.2% which is 6.6% better
than the best of benchmark models. Our model outperforms benchmark
models while being almost 180 times smaller in size at around 1.9Mb.

Keywords: Location Category Inference · Deep Learning · On-device
Machine Learning.

⋆ Supported by Sentiance.



1 Introduction

A system that maps raw mobile user location coordinates to a semantic mean-
ing of that location is a rich source of knowledge and insights for a variety of
applications. We can broadly define two categories of insights that an LCI sys-
tem might provide: user profiles and contextual moments. The main function
of a user profiling model is to get insights into who the users are: parents, stu-
dents, office workers, etc. Contextual moment inference models are designed to
give insights into what they are busy with at certain moments: commute, lunch,
shopping, leisure, vacation, etc. Context-aware advertisement [14], personalized
next point-of-interest recommendation [6], behavior change [10] and other ap-
plications rely explicitly or implicitly on such models in order to deliver most
appropriate messages to right users in timely manner.

Despite the undeniable progress in both mobile hardware and software during
the last years, this problem is still challenging due to such technical problems as
signal obstruction, signal reflection in densely built-up areas such as city centers,
the trade off between GPS accuracy and battery consumption, etc. The uncer-
tainty in the GPS location estimation leads researchers to explore additional
sources of information. It has been shown that incorporating time of events and
socio-cultural clues on how venues of different categories are typically used has
significant impact on the accuracy of the LCI predictions [3, 4]. Other studies
also show that the impact of the GPS noise can be reduced by applying clus-
tering on the set of all locations visited by a user and grouping the visits that
correspond to the same location together [12, 13].

Additional challenges arose recently with the growing concerns about privacy
in location-based services. A number of recent studies explore geoprivacy issues
and potential solutions [7, 16, 17]. This problem is not merely of academic inter-
est, but is also critical for the industry. Today, businesses are expected to handle
their users location-based data with full responsibility and limit the data stor-
age and processing to the minimum required to provide the service. Thanks to
the recent advances in mobile hardware and emergence of on-device deep learn-
ing frameworks such as tensorflow-lite, one of the practical steps to improve
user experience with location-based services is to build on-device models and to
guarantee that the location data never leave user devices. Unfortunately, this
requires new research since many models proposed earlier were not designed to
run in restricted mobile environments.

In this paper we address the problem of building an LCI model that sat-
isfies both requirements: it must be lightweight and embeddable into mobile
applications while incorporating additional temporal features and ensuring best
performance in terms of accuracy metrics. We use one nearest neighbour model
as a baseline that shows the lower bound of an LCI model performance. We also
compare our model against a random forest which has been successfully applied
to the same task [2, 9]. Finally, we train a simple fully connected neural network
and show that such a model would not achieve performance of the random forest.

Main contributions of this paper are following:



– We present a lightweight on-device deep learning LCI model embeddable
into mobile applications that outperforms larger cloud-based models.

– We present a novel method of encoding spatial data on positions of an ar-
bitrary number of venues in the neighbourhood as a spatial histogram of a
fixed size. In order to combine the spatial histogram with temporal features
we propose a multi-modal architecture.

– The data set we collected for our model is unique. Next to well-known tem-
poral models based on time of day, we also introduce duration-based models.

2 Background

Fig. 1. The Journeys app. The
timeline screen shows the timeline
for an entire day of the user includ-
ing each location they visited and
transport modes they used to move
around. Here we show a correctly
identified visit to a lunch place in
Antwerp. Using the insights from
the LCI model we can compute the
’moments’ of the user (Lunch in
this case)

The model we propose is intended to work as
a component of mobile applications that re-
quire insights into the lifestyle of a user. Since
the runtime of the inference is significantly dif-
ferent from the training runtime, we need to
discuss these additional details and also estab-
lish terminology used in the following sections.
In order to facilitate the discussion, the Jour-
neys application is used as an example. Figure
1 presents a screen of the Journeys application
which demonstrates the timeline of a user.

As a user moves around their area of liv-
ing while carrying a mobile device, each mo-
ment of time can be considered as either a
moment of staying at a fixed location or mov-
ing from one location to another. Thus, the
timeline of the user unfolds into a sequence of
being still connected with transportations be-
tween them. For example, if one leaves their
home in the morning, takes a bus to the of-
fice, works till noon and then goes to a cafe
nearby, their timeline can be represented as a
sequence S(home) → T (bus) → S(work) →
T (walk) → S(cafe). We call each such event
S a stationary and each T a transport. De-
scribing specific algorithms that detect sta-
tionaries and transports are out of scope of
this paper. What is important is that a sta-
tionary contains all spatial and temporal vari-
ables our model needs to run the inference:
S = (lat, lon, start, stop). For each stationary,
the LCI model is applied in order to classify
the stationary into one of the supported categories, such as drink-day, drink-
evening, etc. We derive the categories based on the OSM tags attached to each



venue. The full list of supported categories together with a short description and
an example of a corresponding OSM tag is given in the table 3.

In order to infer a category of a location, we also need to obtain a set of can-
didate venues in a certain radius around the location. We call a component that
provides a service for executing such queries a venue provider. The representa-
tion of the set of venue candidates in a form of features is called the environment
fingerprint. Describing an implementation of a venue provider is out of scope of
this paper, but it is important to mention that n order to guarantee that the
location data never leave the user device, the venue provider should also be
on-device.

3 Methodology

We propose an end-to-end system that receives raw stationary events, runs clus-
tering on the entire timeline, builds spatial histogram of venues, incorporates
temporal models and finally outputs the category of the visited location. In this
section we describe each of the steps and models used in them. A high-level
overview of the entire pipeline is presented in Figure 2.

ToD Models Duration
Models

Location
Clustering

Temporal Input
Processor

Spatial Input
Processor

Temporal
Features

Spatial
Histogram

Multi-modal NN

Timeline Clusters

Venues
Provider

Fig. 2. Location category inference pipeline

3.1 Location Clustering

A location clustering model should be able to answer a simple question: which
of the stationary events in the user timeline correspond to visiting the same
location. We hypothesise that by clustering separate locations and considering
their centroids instead of raw GPS coordinates, we can average the noise out
and get closer to the true location. Figure 3 shows that there is indeed a positive
correlation between the number of visits to the same location and the accuracy
of the model.

Existing research on the topic of location clustering based on GPS coordi-
nates shows that density-based clustering techniques work well for the task [12,
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Fig. 3. Visualization of the location clustering action and its impact on the LCI model.
We can see that as the cluster grows with more repeated visits, the model has bigger
chance to classify it correctly

13]. Following the ideas from these papers, we implement a version of DBSCAN
compatible with tensorflow-lite and use the scikit-learn implementation of DB-
SCAN as a benchmark to make sure our model produces the same clusters on
both synthetic and real-world data.

3.2 Temporal Models
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Fig. 4. Example of duration models for
drink-evening, education-parents and
travel-hotel. Duration is measured in
minutes.

Numerous research papers such as [4,
11] have shown how temporal data
can improve location category infer-
ence models compared to those that
only rely on spatial data. Follow-
ing the ideas of McKenzie et al. [4]
we construct temporal models similar
to temporal semantic signatures and
use the likelihoods produced by these
models as input features for the neural
network. Instead of having histograms
with wide bands of 1 day or 1 hour, we
aim for more granularity and fit a ker-
nel density estimation (KDE) model
per category. Each KDE model repre-
sents the likelihood of being at loca-
tion of the corresponding category at
the given time of day for each day and each time bin of 12 minutes. In figure
5 we can see Monday and Sunday time of day models for 3 different categories
drink-evening, education-parents and travel-hotel. We can clearly see that those
models successfully captured the visiting patterns for each of the categories. For



example, the education-parents on Monday has two spikes: one early in the morn-
ing and around 16:00. Those are typical hours of bringing children to school and
picking them up once their classes finish. The corresponding curve on Sunday is
almost flat which is expected as the schools are closed on Sunday.

Unlike with other check-in data sets, we have access to both start time and
the duration of stay for each stationary event in the data set. Thus, we apply the
same technique to build temporal signatures based on duration as well. Fig. 4
shows an example of the duration models for the same three categories. A vivid
example of its potential impact is the model for travel-hotel : it has a second
spike around 8 hours and it will yield much larger likelihood values for longer
durations than the other two models.
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Fig. 5. Example of ToD models for Monday and Sunday for drink-evening, education-
parents and travel-hotel



3.3 Spatial Histogram
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Fig. 6. Example of encoding environment fingerprint of
arbitrary size into a fixed-size spatial histogram

Once we computed clus-
ters and obtained the cen-
troid of the cluster re-
lated to the latest sta-
tionary, we need to query
the venue provider. Dis-
cussing implementation of
such queries is out of
scope of this paper, but
it’s important to men-
tion that avoiding the ex-
change of GPS coordi-
nates with a server re-
quires an on-device im-
plementation of the venue
provider. For our applica-
tion we populate a local
on-device database with OSM data in a large radius around the user, so their
exact location is never exchanged.

A query to the venue provider returns an arbitrary number of venue candi-
dates. For example, a query for venues in a city center could return hundreds
of candidates whereas a query for venues around a gas station in the outskirts
would only return a few. Tensorflow-lite is a restricted environment and the input
to the tensorflow-lite models must be of a fixed size. However, taking only the N
nearest venues is not optimal. Setting N to be too small would lead to missing
true venues in densely built-up areas and making it too large would result in
unnecessary computations. We solve this technical issue by encoding the venue
candidates into a fixed-size table called spatial histogram. Every column in this
table corresponds to a venue category and each row is a band of distances. Since
the true venue is more likely to be among the candidates located closer to the
centroid than those further away, a logarithmic scale is used instead of a fixed
step. Each cell cij contains 1 if a venue category j is present in the band i and
0 otherwise. Fig. 6 shows an example of the spatial histogram construction.

3.4 Location Category Inference Model

The output of the spatial histogram encoding procedure described above is
passed to the neural network as it is. In order to complete the discussion of
data preparation for the multi-modal NN model, we need to explain how the
temporal input is constructed. We can think of each time of day model as a
function that maps a triplet of (category, day, hour) to the corresponding like-
lihood: tod : (category, day, hour) → R. The duration model can be defined
similarly: dur : (category, duration) → R. We precomputed seven tables for
time of day models per day of week and one table for the duration models. For
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Fig. 7. Architecture of the Location Category Inference NN model

each training sample we simply query the corresponding time of day table and
the duration table to obtain 27 time of day and 27 duration likelihoods and con-
catenate them into a single vector together with cluster features. The resulting
vector is visualized on the figure 7 as the ’Temporal Input’

Since temporal features are encoded as a one-dimensional vector and the spa-
tial histogram is two-dimensional, we build a multi-modal neural network which
has two separate inputs. Temporal features are processed with a small fully-
connected neural network, whereas the spatial histogram is first processed with
a 1D convolutional layer with 3 filters and then flattened. Vector representations
of both temporal and spatial features are then concatenated into a single vector
which is further processed by few more dense layers. The last layer is a softmax
layer which represents probabilities assigned by the neural network to each of
the supported categories. Figure 7 visualizes the architecture of the NN.

4 Experiments

The model is trained, fine-tuned and evaluated on a data set of 25709 clusters
labelled via the feedback functionality of the Journeys app discussed above.
The data set spans 64 different countries but is imbalanced and the majority of
records come from the US and Europe. For the experiments we set a fixed 10%
subset of our data aside for evaluation. A stratified split was applied to ensure
that the class imbalance in both training and evaluation are similar. We train
and validate each model as a multi-class classifier that should predict one of the
27 predefined location categories. We use 4 metrics to judge the models: accuracy
and macro-averaged precision, recall and f1 score. In the following subsections
we will describe how each model was trained. The results are analysed in the
next section.



4.1 Nearest Neighbor

The nearest neighbor is a trivial classifier which selects the venue nearest to the
cluster centroid and uses it’s category as a prediction for the location category.

4.2 Random Forest
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Fig. 8. Vector of
features for the
Random Forest
model

Random forests (RF) as well as ensemble models based on gra-
dient boosting, are known to perform well in classification tasks
on tabular data. Alsudais et al. apply RF to infer categories of
locations where users twitted from [2]. In a more recent study
Kim et al. apply RF to infer location categories based on a
variety of personal data such as age, gender, hobby, etc [9]. To
train our version of RF LCI model, we transform the data set
into a tabular form where each row represents a cluster. For
that, we transform the spatial histogram into a simplified ver-
sion where we only keep the distance to the nearest venue of
each category.

4.3 Simple Fully-Connected Neural Network

In order to verify that our multi-modal architecture justifies
additional complexity, we also train a simple fully-connected
network. We reuse the tabular dataset produced for the RF
model, but we additionally apply standard feature normalization for median-
duration, median-start-hour, most-popular-day and the distance-based features
by dividing each feature by the corresponding maximal value. To address the
problem of overfitting, aggressive regularization is applied. We use l2 regular-
ization with the l2-weight w = 0.01 on each dense layer and also add dropout
layers after each dense layer with the dropout-rate α = 0.4 which is similar to
the regularization used for the multi-modal NN. Early-stopping is used based on
the value of the loss function on the dev set which is 15% of the training data
set. Class weights are computed similar to the multi-modal NN model.

4.4 Multi-Modal Neural Network

A series of experiments have been conducted to fine-tune hyperparameters and
avoid overfitting. First, a model without any regularization has been trained and
proved to overfit quickly. We searched for optimal values for the l2-weight w in
range [10−5, 10−1] and obtained best results with w = 0.01. For the dropout-
rate hyperparameter we searched in range [0.1, 0.5]. Larger dropout-rates allow
training larger models without overfitting and for our model the optimal value
was α = 0.4. Increasing it leads to overfitting whereas increasing the model size
does not yield any improvements in terms of validation metrics. Finally, early
stopping based on the value of the change of the loss on the validation dataset
is applied with the patience factor of 100.



drink-day 367 leisure-museum 213 shop-short 2481

drink-evening 830 leisure-nature 52 sport 946

education-independent 175 leisure-park 901 sport-attend 65

education-parents 618 office 2579 travel-bus 675

health 459 religion 247 travel-conference 6

industrial 32 residential 290 travel-fill 1395

leisure-beach 87 resto-mid 2446 travel-hotel 682

leisure-day 68 resto-short 363 travel-long 1123

leisure-evening 272 shop-long 3741 travel-short 1971
Table 1. Classes are highly imbalanced

Location-based data with true labels for visited venues are imbalanced by
nature: people visit venues of certain categories more often than others. Will-
ingness to share personal visits is also biased towards more popular venues such
as restaurants and bars. Table 1 shows the class imbalance in our data set. In
order to overcome this issue, we compute the standard class weights computa-
tion procedure as defined in scikit-learn and specify these weights during the
training.

5 Results and Discussion

Table 2 shows the results for each model. Due to the class imbalance problem, the
accuracy score alone is not enough to compare the models. A model that trades
off recall on the less presented classes to increase its accuracy and precision, for
example, would lead to poor user experience on each of the classes underrepre-
sented in the training data set. For that reason, the f1 score is considered more
important for the current study.

– 1-NearestNeighbor achieves 68.9% accuracy and 64.4% f1 score. To the best
of our knowledge, this is significantly larger than in the previous research.
For example, Shaw et al. report only 20%, although it is important to notice
that in their research the exact venue is predicted and not only its category.

– As expected, Random Forest performs significantly better than the bench-
mark in terms of accuracy (+7.2%). It is important to notice, however, that
the f1 score gain is much lower (+2.2%). Due to the imbalanced classes,
Random Forest achieves the best precision of all the models, but the recall
is significantly low.

– The naive NN fails to achieve the performance of Random Forest and shows
performance similar to the baseline model.

– The multi-modal architecture we propose performs significantly better than
the competitors. It is on par with the Random Forest model in terms of
accuracy, while achieving the best recall score, which gives the f1 score of
73.2% which is 6.6% better than that of the Random Forest.

– The multi-modal NN model only weighs 1.9Mb whereas a serialized version
of the random forest weighs 364Mb.



Model Accuracy Precision Recall F Score

1-NearestNeighbor 68.9 62.5 71.2 64.4

Naive NN 67.6 62.0 71.7 64.5

RandomForest 75.7 81.8 61.5 66.6

Multi-modal NN 76.4 75.2 72.2 73.2
Table 2. Results

6 Related Work

The problem addressed in this paper has many variations and is also known
under different names. Yi et al. propose an LCI model that shows promising
results [11]. The main difference of our model is that it is lightweight and can
be used on-device. The authors also mention extremely high location estimation
uncertainty in their data set, which is not the case for the data we collected.
McKenzie et al. address the problem of mapping the user location to a spe-
cific venue under the name of ’reverse geocoding’ [4]. We reused their ideas on
constructing temporal signatures with some changes geared towards more gran-
ularity in time resolution and used KDE models instead of raw histograms to
avoid having underrepresented time bands. Shaw et al. pose a similar problem
as learning to rank [1]. The main difference is in the application domain: we are
interested in fully autonomous prediction of a single category whereas [1] aim to
select top-N candidates and let the user pick the correct one.

He et al. are solving a very similar problem but from a recommendation
systems point of view [6]. PoI recommendation seems to be the most actively
studied setting with respect to the LCI problem and Islam et al. [15] provide
an overview of the most recent advancements in this field with deep learning
techniques. Bao et al. also produced a survey on recommendations in location-
based services without a specific focus on deep learning [3]. Duan et al. apply
recurrent neural networks to build embeddings of user locations and predict the
next visited PoI [8]. We also learn representations of user locations, but the main
difference is that we only use geospatial data for that, whereas Duan et al. mix
in some data on the user and textual data on the location. Another difference is
that for us it is less relevant to apply the RNN since we do not try to predict
the next visited PoI.

Angmo et al. study the impact of clustering on identifying significant lo-
cations from spatio-temporal data and propose improvements for the classical
DBSCAN algorithm [13]. Due to the specific features of the data set, authors
use rather large values for the minimum number of points in a cluster - 50, 80,
100. For our model, we set this parameter to 1, since even a single visit to a
location matters and we do not have any a-priori assumptions about this fea-
ture of the data set. Andrade et al. also study DBSCAN for location clustering
and introduce a new variation of DBSCAN for spatio-temporal data that de-
rives significant locations [12]. They also apply Gaussian Mixture Models on the
obtained clusters in order to derive habits of the users. Given the success of



density-based clustering techniques on this task, we also applied DBSCAN for
location clustering.

Some researchers address the LCI problem but with the data sets enriched
with data inaccessible to us. Kim and Song successfully apply random forest
models to predict categories of visited venues based on fusion of location data
and personal data such as age, job, salary, etc [9]. Alsudais et al. also train
random forest models for the same problem, but they mix in textual data from
the tweets of the users. We take inspiration from these results and train our own
version of a random forest model to challenge the multi-modal neural network.

Another interesting study related to building embeddings is DeepCity [5].
The authors propose a framework that can learn embeddings for both locations
and users by utilizing task specific random walks on a bipartite graph. As one
of the use cases, they consider location category prediction. The embeddings
learned by the DeepCity model are passed to a task-specific classifier model.
Unfortunately, the size of the embeddings table is prohibitively large for our use
case.

7 Conclusion

In this paper we present an on-device multi-modal neural network model for the
location category inference problem which outperforms large ensemble based
models while being lightweight and embeddable into mobile applications. We
present a simple yet effective method to incorporate both spatial and temporal
features - temporal models and the spatial histogram. Due to this method, our
model performs significantly better than a naive neural network which utilizes
simpler representation for its input data.

8 Appendix

Category Description Example OSM tag
drink-day Coffee bars and tea rooms amenity:cafe
drink-evening Bars and pubs amenity:bar
education-independent Educational centers for

adults, universities
building:university

education-parents Primary schools and kinder-
gartens

amenity:kindergarten

health-long Hospitals amenity:hospital
health-short Dentists and GP’s amenity:dentist
industrial Factories and warehouses building:industrial
leisure-beach Beaches and resorts leisure:beach
leisure-day Day-time entertainments sport:paintball
leisure-evening Evening entertainments amenity:cinema



leisure-museum Museums tourism:museum
leisure-nature Nature reserves leisure:fishing
leisure-park City parks and gardens leisure:park
office Office buildings building:office
religion Monasteries, abbeys building:cathedral
residential Residential buildings, houses building:apartments
resto-mid Restaurants amenity:food court
resto-short Fast food, sandwich bars amenity:ice cream
shop-long Malls, shopping centers shop:mall
shop-short Small local shops, bakeries shop:bakery
sport Gyms, sport centers leisure:fitness center
sport-attend Stadiums building:stadium
travel-bus Bus stops highway:bus stop
travel-conference Conference halls amenity:conference centre
travel-fill Gas stations amenity:fuel
travel-hotel Hotels and B&B’s building:hotel
travel-long Airports aeroway:airport
travel-short Public transport stations station:subway

Table 3: Full list of location categories.
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