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While reinforcement learning (RL) has been applied to a wide range of chal-
lenging domains, from game playing [9] to real-world applications such as effec-
tive canal control [11], more widespread deployment in the real world is ham-
pered by the lack of guarantees provided with the learned policies. Although
there are RL algorithms which have limit-convergence guarantees in the discrete
setting [12] (and even in some continuous settings with function approximation,
e.g., [10]), these are lost when applying more advanced techniques which make
use of general nonlinear function approximators [13] to deal with continuous
Markov decision processes (MDPs) such as deep-RL (e.g., [9]). In this work, we
apply such advanced RL algorithms to unknown continuous MDPs with (safety
constrained) reachability or discounted-reward objectives, and we consider the
challenge of simplifying and verifying RL policies. Our goal is to enable model
checking [2] by learning an accurate, tractable model of the environment.

Bisimulation Guarantees. To recover the formal guarantees, we thus seek a
verifiable discrete latent model that approximates the unknown environment.
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Fig. 1: Execution of π.

Given the original (continuous, possibly unknown)
environment model M, a latent space model is
another (smaller, explicit) MDP M with state-
action space linked to the original one via state
and action embedding functions ϕ and ψ. Intu-
itively, an agent can execute a latent policy π (i.e.,
a policy defined over the latent spaces) in M as
follows: at each step of the interaction, the current
state s of M is embedded to the latent space via
ϕ(s) = s, then the agent executes the latent ac-
tion a prescribed by the policy π by embedding it
back to the original model via ψ. Then, M transi-
tions to the next state s′ according to its transition
function P, the original state s, and this resulting
action. The guarantees rely on (i) the bisimulation pseudometric d

∼
π [5, 6], and

(ii) two local losses Lξπ
P and Lξπ

R [7]. The former can be interpreted as the largest
behavioral difference between M and M when π is executed. In particular, a
zero distance means that the agent behaves the same way in both models. The
latter intuitively quantify respectively the expected distance between the origi-
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nal and latent reward functions, R and R, as well as their transition functions,
P and P. We show that these two losses bound d

∼
π:

E
s∼ξπ

d
∼
π(s, ϕ(s)) ≤

Lξπ
R + γLξπ

P

1− γ
; d

∼
π(s1, s2) ≤

(Lξπ
R + γLξπ

P

1− γ

)(
ξ−1
π (s1) + ξ−1

π (s2)
)

where ξπ is a suitable distribution over states-actions likely to be seen under
π, γ is a discount, and s1, s2 have the same embedding ϕ(s1) = ϕ(s2). These
inequalities guarantee the quality of the abstraction and representation: when
local losses are small, (i) in average, states and their embedding, and (ii) all
states sharing the same discrete representation, are bisimilarly close. We give
PAC approximation schemes to compute both the losses and said bounds. Next,
we learn a distillation π of the RL policy along with M, where the behaviors of
the agent can be formally verified. The bounds offer a confidence metric allowing
to lift the guarantees obtained this way back to M, when it operates under π.

Variational MDP. We learn M via a variational autoencoder (VAE) by max-
imizing a lower bound on the likelihood of traces generated by executing the
original RL policy in M. We derive a loss function incorporating variational
versions of the local losses that enables learning (i) a discrete latent model, (ii)
state-action embedding functions, and (iii) a distillation π of the RL policy. Our
algorithm allows training this VAE in an efficient way and avoiding the so-called
mode collapse problem, often occurring in variational models [1].

Experiments. We trained deep-RL policies [9, 8] for various benchmarks [3],
which we then distill via our approach. The results reveal that optimizing the
VAE-MDP (Fig. 2a) allows minimizing the local losses (Fig 2b). Furthermore,
this enables the distillation of RL policies into π, for which the formal guarantees
apply: its performances in the original model are eventually recovered (Fig 2c).
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Fig. 2a. Variational metrics (VAE-MDP optimization)
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Fig. 2b. Local losses
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Fig. 2c. Distilled policy evaluation

This work has been published in the proceedings of the 36th AAAI Confer-
ence on Artificial Intelligence [4]. Ongoing work includes the extension of the
approach toWasserstein autoencoders, to provide additional learning guarantees.



Distillation of RL Policies with Formal Guarantees via VAE-MDPs 3

Acknowledgments

This research received funding from the Flemish Government (AI Research Pro-
gram) and was supported by the DESCARTES iBOF project. G.A. Perez is also
supported by the Belgian FWO “SAILor” project (G030020N).

References

1. Alemi, A.A., Poole, B., Fischer, I., Dillon, J.V., Saurous, R.A., Murphy, K.: Fix-
ing a broken ELBO. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
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