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Abstract. We study whether the learning rate α, the discount factor
γ and the reward signal r have an influence on the overestimation bias
of the Q-Learning algorithm. Our preliminary results in environments
which are stochastic and that require the use of neural networks as func-
tion approximators, show that all three parameters influence overestima-
tion significantly. By carefully tuning α and γ, and by using an expo-
nential moving average of r in Q-Learning’s temporal difference target,
we show that the algorithm can learn value estimates that are more ac-
curate than the ones of several other popular model-free methods that
have addressed its overestimation bias in the past.

1 Approach

Recall that given a Markov Decision Process with state space S, action space
A, transition function P and reward function ℜ(st, at, st+1); Q-Learning learns
optimal values Q∗(st, at) for each state s and action a at time-step t as follows:

Q(st, at) := Q(st, at) + α[rt + γ max
a∈A

Q(st+1, a)−Q(st, at)]. (1)

Due to the maximization operator in its Temporal Difference (TD) target, Q-
Learning estimates the expected maximum value of a state, instead of its max-
imum expected value. Most recent work aimed to reduce Q-Learning’s overes-
timation bias by replacing its max operator [3,4,2,6,1,7]. In this paper, instead
of replacing the maximization estimator, we investigate whether overestimation
can be prevented by tuning the following parameters: the learning rate α, the
discount factor γ and the reward signal r.

2 Main Findings

In the Gridworld environment initially proposed by Hasselt [5] we find that a
static learning rate as well as a lower discount factor value significantly prevent
the algorithm from overestimating. The same holds when using an exponential
moving average in Q-Learning’s TD-target instead of the raw reward signal r.
We compute this quantity as follows: r̂(s) += 1

x (r(t) − r̂(s)), where x is a
static hyperparameter determining the degree of weighting decrease. We also
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find that by tuning all three hyperparameters, Q-Learning does not suffer from
underestimation either contrary to algorithms such as Double Q-Learning (DQL)
[5] and Self-Correcting Q-Learning (SCQL) [7].
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Fig. 1. From left to right our results showing that i) overestimation, as well as under-
estimation, can be prevented by using a constant value of α = 0.05 and by maintaining
an exponential moving average estimate r̂; ii) γ = 0.6 allows Q-Learning to not over-
estimate; and iii) QL trained with either α = 0.05, γ = 0.6 or x = 70 outperforms
regular QL, DQL and SCQL.

Similar results have been obtained when combining Q-Learning with a multi-
layer perceptron serving as function approximator. On the popular Cartpole

environment we found that simply changing the discount factor γ from 0.999 to
0.97 significantly prevents overestimation without harming Q-Learning’s perfor-
mance (Fig. 2).
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Fig. 2. From left to right our results showing that: i) DQN suffers from severe overesti-
mation when compared to DDQN and SCQL; ii) training a DQN agent with γ = 0.97
mitigates this overestimation bias significantly; iii) a DQN agent trained with γ = 0.97
performs just as well as all other algorithms trained with γ = 0.999.

3 Summary

We have studied the role of the learning rate α, the discount factor γ and the
reward signal r under the lens of the overestimation bias that characterizes the
popular Q-Learning algorithm and shown that all three factors of influence play
a significant role in Q-Learning’s value estimations. By considering α, γ and r̂
one can prevent overestimation in an easy, computationally not-intensive way
as, differently from methods such as Double Q-Learning and Self-Correcting
Q-Learning, there is no need to keep track of a second state-action table.
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