
Step-wise Explanations of Sudokus using IDP

William Dumez1, Simon Vandevelde2,3, and Joost Vennekens2,3

1 william.dumez@skynet.be
2 KU Leuven, De Nayer Campus, Dept. of Computer Science, Belgium
3 Leuven.AI – KU Leuven Institute for AI, B-3000 Leuven, Belgium

{s.vandevelde, joost.vennekens@kuleuven.be}

Most Sudoku solvers are typically written in imperative programming lan-
guages, and follow one of two main approaches. The first approach is backtrack-
ing, which can solve any Sudoku (or variant), but not in a way that humans
can easily understand. The second approach is to apply hand-crafted patterns,
called solving strategies [3]. With this approach, the steps taken to solve the
Sudoku also form a step-wise explanation. However, this approach only works if
the set of solving strategies that is used actually suffices for the given Sudoku.
Moreover, while many strategies are well-documented for regular Sudoku [3],
they are not well-known for variants such as Killer Sudoku or Thermo Sudoku.
The goal of this thesis was to develop a one-size-fits-all, universal tool to solve
and explain Sudokus and Sudoku variants that requires only knowledge of the
Sudoku (variant) rules.

ZebraTutor [1] is an application developed with the aim of solving logic grid
puzzles, and explaining them in a step-wise manner. It uses a general method
for explaining constraint satisfaction problems, based on minimal unsatisfiable
subsets (MUS) [1]. The application employs a greedy algorithm, that builds an
explanation sequence by finding the “easiest next step” by calculating a MUS
for each possible step, and applying a cost function. For the MUS generation,
ZebraTutor uses the IDP System [2], a knowledge-based reasoning engine for
first order logic.

We applied this method to Sudoku and found that, in general, it works well
for generating understandable explanations. However, the algorithm accepts a
cost function which is specific to the constraint satisfaction problem. We chose
to use a cost function that is a linear combination of the number of cells used
in the MUS, as well as the number of constraints. Intuitively, the more cells
and constraints are required to explain a step, the harder it is to understand.
This cost function was chosen mainly for its modularity, since it allows for easily
adding new constraints, which is necessary when combining Sudoku variants.
Fig. 1 shows two visualisations of a preferred solving step, as generated by the
algorithm.

The main downside of this algorithm is the large quantity of MUSs that
must be calculated; a single MUS can take a couple of minutes, so generating
the explanations for an entire Sudoku can take a full week. Another problem lies
in IDP’s MUS generation. It generates MUSs that are subset-minimal, but do not
necessarily contain a minimal number of atoms. As such, sometimes explanations
are more complex than they could be.



2 W. Dumez et al.

Fig. 1. Explanation steps generated by the Sudoku explanation tool for different puz-
zles. The cell in green is filled in with an “8”. All blue cells are necessary to understand
why this is the case. The image on the left corresponds to an easy explanation, and
the image on the right corresponds to a harder explanation.

In order to provide more detail for harder-to-understand explanations, we
tried a variant of the ZebraTutor algorithm which produces eight sub-explanations
per solution step. This is done by explaining why a cell cannot be each of the
eight other values, instead of explaining why it must be a specific value. We
expected that this would result in more fine-grained explanations that show
exactly which cells are involved in ruling out each value. However, instead we
found that previously easy explanations now had redundant sub-explanations,
while previously hard explanations remained hard to understand as one of the
sub-explanations was virtually identical to the full explanation generated by the
original ZebraTutor method.

The running time can be improved by using multithreading and calculating
fewer unsat cores. We did this by first searching for cells which could be explained
by the easiest solving strategies, and then skipping the unsat core calculations
for any cells that could not be solved through those strategies. The reasoning
here is that any cells that are skipped are guaranteed to have harder explanations
anyway, and are therefore not worth calculating unsat cores for. This method can
provide a significant speedup, but is ultimately reliant on the complexity of the
Sudoku puzzle. The main problem with this method is that searching for solving
strategies requires extra IDP code that is specific to Sudoku variants, which
means this code must be updated to allow solving for new Sudoku variants.

In summary, a universal Sudoku explanation tool was created that uses the
ZebraTutor algorithm and requires no knowledge of existing solving strategies.
This algorithm works well for easy steps, but harder steps could use more detailed
explanations. The solver is slow because of the many required MUS calculations,
and IDP’s MUS generation sometimes results in explanations that are more
complicated than would intuitively be deemed necessary.



Step-wise Explanations of Sudokus using IDP 3

References

1. Bogaerts, B., Gamba, E., Guns, T.: A framework for step-wise explaining how to
solve constraint satisfaction problems. Artificial intelligence 300, 103550 (2021)

2. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate
logic as a modelling language: The idp system (2014)

3. Stuart, A.: Sudokuwiki.org - strategies for popular number puzzles (2019), https:
//www.sudokuwiki.org/Main_Page

https://www.sudokuwiki.org/Main_Page
https://www.sudokuwiki.org/Main_Page

	Step-wise Explanations of Sudokus using IDP

