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Abstract. In many real-world scenarios, the utility of a user is derived
from a single execution of a policy. In this case, to apply multi-objective
reinforcement learning, the expected utility of the returns must be opti-
mised. Various scenarios exist where a user’s preferences over objectives
(also known as the utility function) are unknown or difficult to specify.
In such scenarios, a set of optimal policies must be learned. However,
settings where the expected utility must be maximised have been largely
overlooked by the multi-objective reinforcement learning community and,
as a consequence, a set of optimal solutions has yet to be defined. In this
work we define a new dominance criterion, known as expected scalarised
returns (ESR) dominance, that extends first-order stochastic dominance
to allow a set of optimal policies to be learned in practice. Additionally,
we define a new solution concept called the ESR set, which is a set of
policies that are ESR dominant.

1 Introduction

Many real-world sequential decision making problems have multiple, often con-
flicting, objectives [15]. A modern approach to solving such problems is to apply
multi-objective reinforcement learning (MORL) by taking a utility-based per-
spective [2]. For MORL a utility function is used to model the preferences over
objectives of a user (human decision maker). However, in certain scenarios a
user may be uncertain about their preferences, and therefore their utility func-
tion may be unknown [11].

The majority of MORL literature focuses on two optimality criteria: the
scalarised expected returns (SER) and the expected scalarised returns (ESR)
criterion. When a user has multiple opportunities to execute a policy, the SER
criterion must be optimised. Under the SER criterion, the expected value vector
is calculated, the utility function is applied, and the utility of the expectation
is computed. The SER criterion is the most commonly used optimality criterion
in the MORL literature [7,13,16,12]. In scenarios where a user may only have
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a single opportunity to execute a policy, the ESR criterion must be optimised.
Under the ESR criterion, the utility function is applied to the vector returns, then
the expected utility is calculated. The ESR criterion has largely been overlooked
with some exceptions [10,3,14,6,9].

Under the SER criterion, when the utility function is unknown, expected
value vectors can be utilised to determine a partial ordering over policies (e.g
Pareto dominance [8]) and a solution set can be computed (e.g. Pareto front)
[16,7]. However, expected value vectors are fundamentally incompatible with the
ESR criterion, given the utility function must first be applied to the vector re-
turns before the expectation can be computed. Furthermore, to date no solution
concept has been defined to determine a partial ordering over policies under
the ESR criterion. Therefore, new solution concepts must be derived in order to
compute sets of optimal policies under the ESR criterion.

In this work we define a new solution concept known as ESR dominance,
which takes a distributional perspective to MORL to determine a partial ordering
over policies under the ESR criterion. By utilising ESR dominance it is possible
to compute a set of policies under the ESR criterion. Moreover, we define the
resulting set of optimal policies as the ESR set. To compute ESR dominance, we
first define a return distribution, Zπ, as the multivariate distribution over the
vector returns received from executing a policy π. Therefore, we can define ESR
dominance as follows:

Definition 1. For return distributions Zπ and Zπ′
, Zπ ≻ESR Zπ′

for all mono-
tonically increasing utility functions if, and only if, the following is true:

Zπ ≻ESR Zπ′
⇔

∀v : FZπ (v) ≤ FZπ′ (v) ∧ ∃v : FZπ′ (v) < FZπ′ (v),

where FZπ is the cumulative distribution function (CDF) of the return distri-
bution Zπ. ESR dominance extends first-order stochastic dominance [5,17,1] for
MORL settings. Using ESR dominance, it is possible to define a set of optimal
policies for the ESR criterion, known as the ESR set.

Definition 2. The ESR set, ESR(Π), is a sub-set of all policies where each
policy in the ESR set is ESR dominant,

ESR(Π) = {π ∈ Π | ∄π′ ∈ Π : Zπ′
≻ESR Zπ}.

By utilising ESR dominance to compute the ESR set it is now possible to
compute sets of optimal solutions under the ESR criterion in MORL settings.
Given expected value vectors cannot be used to compute sets of optimal policies
under the ESR criterion, new distributional MORL methods must be developed
for the ESR criterion.
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