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Abstract. Text segmentation, a pre-processing step present in most
NLP pipelines, is a rich topic that tends to get little attention in most
NLP studies. We provide a brief empirical account on whether the choice
of a particular segmentation algorithm (BPE, SentencePiece, WordPiece,
Unigram, Morfessor) has an effect on the performance on downstream
tasks, without transfer learning: natural language inference (SNLI), and
sentiment classification (SST2). In contrast to previous studies which
have compared BPE to Unigram segmentations on 4 downstream tasks,
or language models built with BPE and morphologically aligned segmen-
tations, this paper provides a comparison between 5 common segmen-
tation algorithms and runs experiments with the algorithms fitted on
20 random subsets of the training corpus. In all experiments, we use a
simple LSTM-based artificial neural network (in a Siamese setup for the
SNLI) in either binary, or three-way classification set-up. The resulting
accuracy data across the segmentation algorithms do not conclusively fa-
vor any particular one of them, in contrast to what the related literature
suggests.
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1 Introduction

A variety of text segmentation algorithms (often referred to as tokenization)
has emerged, more or less, as a by-product of the large interest in solving in-
creasingly difficult NLP problems. Natural language text segmentation can be
approached in widely varying degrees of sophistication, ranging from segmenta-
tion by whitespace, through algorithms based on byte-pair encoding [7] (BPE),
to language modeling [11]. However, the extent to which the choice of a par-
ticular segmentation algorithm affects the system’s performance on downstream
tasks is rarely examined [1].

Arguably the most significant advances in NLP have been due to improve-
ments in the architecture of neural networks (e.g., the LSTM architecture [8],
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layer stacking and bi-directional networks [15], the attention mechanism [26],
transformer [24], etc.) and increase in dataset sizes coupled with better opti-
mization procedures and hardware, rendering the possible effects of segmenta-
tion marginal at most. A further reason for the reluctance to inspect this effect
might be the high prevalence of transfer learning [15] (using pre-trained mod-
els on other tasks and datasets prior to experimentation) in NLP experiments,
where the dimension of the inputs, and thus the tokenizer, is the same for all
further fine-tuning tasks.

Perhaps more motivation to study segmentation algorithms can come from
a researcher viewing the problem in a more fundamental way: not merely an an-
noyance in the pre-processing pipeline, but as an investigation of the principles
by which meaningful, self-contained chunks of text or other types of sequential
data, can be recognised. Most segmentation algorithms work in unsupervised
fashion, which, apart from suggesting that they do exploit some low-level prin-
ciples, means that they are difficult to evaluate, since defining a gold standard
would require to actually know these principles. A potential difference in perfor-
mance in a simple downstream task, across different segmentation algorithms,
would provide an extrinsic, indirect method to evaluate and rank segmentations
and algorithms. In order to explore the possibility of cheaply evaluating seg-
mentation algorithms in this way, we employ an experimental set-up that uses
a small-scale simple LSTM without any pre-training or transfer learning

The focus of the present work is not achieving performance comparable to
the SOTA. Instead, we provide an empirical analysis oriented towards answering
the following research question:

– Is there a marked difference in the performance of a small-scale LSTM-based
classifier on text classification as a result of using different segmentation
algorithms?

We ran multiple experiments across five popular segmentation algorithms
trained on random subsets of the training corpora: the Stanford Natural Lan-
guage Inference [2] (SNLI), and the Stanford Sentiment Treebank [22] (SST2)
corpus 3. The experiments were ran with an LSTM-based predictor fed with in-
puts resulting from segmentation algorithms (with a fixed target vocabulary size
of 10000, a hyper-parameter that all of the segmentation algorithms share), all of
which were variably fitted 20 times on a random subset of the task-corresponding
corpus. The experiments were evaluated by comparing the best-achieved predic-
tion accuracy on the validation split (provided by the original dataset) across
the random subsets and segmentation algorithms via a one-way ANOVA.

While models trained with segmentations of all the aforementioned algo-
rithms predicted the targets with above baseline accuracy, there was no a marked
difference between the segmentation algorithms themselves. However, there was
strong variance in performance across the randomized runs.

3 The current SOTA accuracy at these tasks is 92.1% [16] and 97.5% [10], respectively.
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2 Related Work

Prior to the vast interest of NLP researchers, text segmentation has been mainly
researched from a linguistic perspective, e.g., analyzing distributional cues that
language learners might use to segment speech [19], or designing algorithms to
find morphological segmentation from raw text data [4, 5, 25].

Strong demand for precise machine translation in recent years has lead to
the adoption of BPE [21] as a robust solution to text segmentation, which al-
leviates the problem of out-of-vocabulary words in an open domain setting. It
also improves the translation of rare words which can often be broken down into
more frequent sub-words, thereby greatly reducing the required vocabulary size
of models and leading to more efficient training. Originally being developed as a
greedy compression algorithm [7], it has the benefits of fast runtime and being
unsupervised. Nowadays, BPE is used in most NLP systems: either in its original
form in the GPT-models [17], or some of its derivatives, such as WordPiece [20]
in BERT [6] or SentencePiece [12] in ALBERT [13], XLNet [28].

While there is no shortage of segmentation algorithms for NLP, it is rare
to see them in direct comparison. The Unigram algorithm was developed as
a method capable of providing alternative segmentations based on probability,
which can be usefully employed as a regularization technique for, e.g., NMT.
A study [11] has compared BLUE scores achieved by training an NMT system
with segmentations as a result of the aforementioned subword regularization, the
Unigram segmentation without subword regularization, BPE, and segmentation
into words and characters. The study reported an approximately 1

2 point increase
in BLUE score by using the subword regularization technique over only using
BPE, while BPE achieved a comparable score to the Unigram segmentation
without regularization. The word and character models performed the worst.

Recently it has beed argued [1] that BPE is suboptimal for language model
pre-training based on experiments on three English language tasks (SQuAD 1.1
[18], MNLI [27], and CoNLL NER [23]) and 1 Japanese language task (TyDi
QA [3]). The authors pre-trained and fine-tuned two different BERT language
models for each of the languages with segmentations from either BPE or the
Unigram model and found subtle improvements in range of up to 1% in classi-
fication accuracy or F1-score in favor of the models pre-trained with Unigram
segmentations on the English tasks. The TyDi QA task with Japanese language
reportedly achieved an increase from 42.1 to 54.4 in F1-score by using BERT
with Unigram segmented pre-training; the authors mainly explain the large gap
by the small amount of data available in the Japanese portion of TyDi compared
to SQuAD (5k vs. 88k examples). The scale of such an experimental set-up is
orders of magnitude larger than the current work because (1) it employs the
full process of language model pre-training and fine-tuning, and (2) it uses a
full-sized transformer model (BERT) requiring a lot of computational resources
for training.

In another study, the authors examined to what extent can difference in
difficulty in language modeling be explained by morphological complexity of a
language by comparing the perplexity of language models trained with BPE seg-
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mentations and segmentations more closely aligned with language morphology
produced by Morfessor [14]. They found that the latter class of segmentations
lead to less negative impact on language model perplexity in languages with
features indicating higher morphological complexity. A further study puts the
WordPiece algorithm to a test against morphologically informed segmentations
by devising a semantic probing task, where the authors compare the accuracy
in predicting one of two possible semantic classes using representations of con-
structions resulting from either of the segmentation algorithms and processed
by the BERT language model [9]. They constructed a dataset by identifying
derivationally complex words which are dominantly prevalent in, for example,
scientific articles about physics rather than computer science, or vice versa, and
found that the representations produced by morphologically aligned segmenta-
tions predicted the classes 2− 4% more accurately across tasks.

3 Segmentation Algorithms

In this section we briefly introduce the segmentation algorithms in our experi-
ments. All of these algorithms are unsupervised.

Morfessor The Morfessor is a family of unsupervised algorithms designed to
produce segmentations that correlate with morpheme boundaries. It is imple-
mented in a general way, such that it can be used for any language, or even
other type of sequential data. The smallest units in Morfessor are atoms which
occur in sequences that are called compounds. The output of the algorithm are
constructions, which are sub-sequences of compounds. While various extensions
to Morfessor have been proposed, the baseline version is based on a maximum
a posteriori estimation of parameters θ (consisting of a lexicon and a grammar)
given a training dataset DW . The first term of the resulting loss function (1), the
negative logarithm of the probability of the model parameters, is implemented
such that simpler models (i.e., smaller vocabulary) are preferred over more com-
plex models. The second term evaluates the likelihood of the data as a product
of the probabilities of the individual segments, since they are assumed to occur
independently. In practice, the algorithm iterates over compounds in the training
data and calculates the decrease in cost for every possible split of a particular
compound, it chooses the cheapest option and continues recursively.

L(θ,DW ) = −log(p(θ))− log(p(DW |θ)) (1)

Unigram Language Model The general idea of the Unigram language model
algorithm is very similar to the Morfessor, but it is implemented differently. In
the first step, the algorithm heuristically initializes a large vocabulary, typically
by including all individual characters and sets of most frequent n-grams. Then,
for each word in the vocabulary, it estimates how the likelihood of the data and
thus the loss function in Formula 2 would change under the new parameters (i.e.
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the vocabulary without this word.) Finally, the words are sorted according to
their estimated differential loss, and the top portion of the list, given a desired
vocabulary size, is retained as final vocabulary while the rest is discarded. As a
rule, individual characters are never discarded from the vocabulary to avoid out-
of-vocabulary situations. While the Morfessor includes an extra term in the loss
function, penalizing for model complexity, one could argue that, if implemented
as penalty for large vocabulary size, such a preference is implicitly included in
Formula 2: a smaller vocabulary means a smaller event space, leading to larger
probabilities estimated for individual events and overall higher likelihood.

L(θ,DW ) = −log(p(DW |θ)) (2)

Byte-Pair Encoding BPE is a greedy compression algorithm that works from
the bottom up by first initializing the vocabulary with all of the individual
characters in the input. It then proceeds in iterations, constructing all possible
bigrams (pairs) in the input sequence, calculating their frequencies, and finally
replacing all the instances of the most frequent pair with a newly introduced
symbol, which is added to the vocabulary. The algorithm proceeds until a desired
vocabulary size is achieved, or until there is no bigram occurring more than once.

WordPiece Similarly to BPE, WordPiece constructs a vocabulary from the
bottom up by merging pairs of bytes or characters. As a criterion for choosing
which pair to substitute, it looks for the pair with the highest ratio between the
joint probability of the two elements and the product of their individual probabil-
ities. This is a quantity proportional to the exponential of the pointwise mutual
information between the two symbols (for comparison, in BPE, the bigram count
represents the estimate of the joint probability of the pair’s occurrence).

SentencePiece SentencePiece was designed to be able to easily train language
models for languages that do not use whitespace for word separation. Sentence-
Piece has been designed by taking into account various considerations that are
mainly relevant in production, large-scale scenarios (see the original paper for
more details [12]).

4 Experiments

4.1 Downstream Tasks

We conducted experiments on two English language tasks: natural language in-
ference and sentiment classification. Both of these tasks are classification tasks
(binary and ternary, respectively) and were evaluated by the best achieved ac-
curacy on a development set during training, over several runs of the segmenter-
training (see Section 4.2). All of the experiments used a neural network consisting
of an embedding layer and a single LSTM [8] layer, in a one-directional setup
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with no dropout. The outputs of the network at each time-step were processed
via max-pooling, and finally fed in to a single-layer feed-forward classifier. See
Table 1 for an overview of the hyper-parameters. The number of training epochs
was set in such manner that the performance on test-set started to decrease or
converged. We used PyTorch 4 for implementation.

The Stanford Natural Language Inference (SNLI) corpus consists of 570k
training, 10k validation, and 10k test sentence pairs labeled as entailment, con-
tradiction, or neutral. The dataset is balanced, thereby being classified accurately
about 33% of the time by random guessing. Both of the sentences in a pair are
encoded into a vector representation by a shared encoder module, and the two
resulting vectors are then concatenated and fed through a classifier to produce a
prediction. In this Siamese-style model, the sequence encoder is implemented via
an LSTM, and the classification is made via a fully-connected layer with three
softmax output-nodes.

The Stanford Sentiment Treebank (SST2) dataset consists of 67k training,
and 872 validation examples labeled in a binary way either having a positive
or negative sentiment. The dataset is balanced, implying an expected random
guessing accuracy of 50%. The predictor for this task has a simple design: the
sentence is fed in to an LSTM-based encoder, on top of which there is fully-
connected layer with one output node with a sigmoid activation, producing a
binary prediction.

Table 1. Hyperparameters used for training. The model for SST2 was smaller because
of the smaller corpus.

Task Embedding Size Hidden Size Batch Size Learning Rate Epochs

SNLI 128 64 1024 0.003 10

SST2 32 16 128 0.001 15

4.2 Segmentation

In order to robustly test for the differences in the segmentation algorithms, we
trained each of them 20 times on different portions of the training corpus. There
portions were later separately used to train the predictors. In case of the (larger)
SNLI corpus, we worked with subsets sized 20% of the original corpus. In case
of the SST2, the subsets had a size of 75% of the original corpus. The vocab-
ulary size parameter, where available, was set to 10000. We also examined two
additional segmentations: segmentation by words, and a primitive segmentation
creating a segment boundary for every three characters of the full sentence. The

4 https://pytorch.org/
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latter algorithm, which we will refer to as blabla segmentation, provides a sanity
check. The algorithms under examination were trained by fitting the sentences
already split in to words. All of the text was pre-processed such that there were
only lower-case letters, and all non-alphabetical characters, including digits and
punctuation, were set apart from their surroundings by a whitespace, such that
splitting the resulting string by whitespace results in segmentation by words.
(See Table 2 for example segmentations.) In case of Morfessor, we used the
Python interface to the Morfessor 2.0 baseline model [25]. For the remainder of
the algorithms, we used the Huggingface implementations 5.

Table 2. Example segmentations of one sentence from the SST2.

BPE just-as-the-lousy-tarantino-im-it-ations-have-sub-sided

SentencePiece just-as-the-lousy-tarantino-im-itations-have-sub-s-ided

WordPiece just-as-the-lousy-tarantino-imitation-s-have-sub-sided

Unigram just-a-s-the-lous-y-tarant-in-o-imitation-s-have-sub-sided

Morfessor just-as-the-lousy-tarantino-imitation-s-have-subsided

4.3 Results

A one-way ANOVA showed that there was no difference in classification accuracy
between the segmentation algorithms for the SST2, F (4, 15) = 0.432, P = 0.785,
or the SNLI, F (4, 15) = 2.564, P = 0.043. An overview of the results of the two
experiments is contained in Table 3.

SST2 The highest accuracy was achieved by a model trained on the vanilla
BPE segmentation (81.60%). The lowest achieved accuracy was with Morfessor,
(80.47%). The baseline segmentation by words performed about 3 − 4% worse,
and the blabla segmentation performed more than 10% worse than all of the other
segmentation algorithms. Measured over the random subsets for segmentation
training, the standard deviation of the model accuracy varied in the range of
1.44− 2.35%..

SNLI The highest accuracy was achieved by a model trained on a SentencePiece
segmentation (72.11%). The lowest accuracy was with the Unigram segmentation
model, (71.09%). The baseline segmentation by words performed on par with
the segmentation algorithms at 71.36% accuracy, and the blabla segmentation
performed about 9 − 10% worse than the other segmentation algorithms. Over
the random subsets, the standard deviation of the model accuracy varied in the
range of 0.83− 1.29%.

5 https://huggingface.co/docs/tokenizers/api/trainers
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Table 3. Overview of the results. Each result corresponds to aggregated results over
20 runs per segmentation algorithm and task.

SST2 (dev.) SNLI(dev.)

[len] % acc. (µ± σ) % acc. (max) [len] % acc. (µ± σ) % acc. (max)

BPE 10.88 77.97±1.98 81.60 11.43 70.06±1.29 72.00

Unigram 14.13 78.03±1.45 81.58 13.66 70.04±0.83 71.09

SentencePiece 11.08 78.16±2.02 81.34 11.48 69.59±1.28 72.11

WordPiece 10.89 77.44±2.35 80.67 11.43 69.65±1.16 71.42

Morfessor 10.29 78.00±1.44 80.47 11.40 70.60±1.04 71.93

Words 10.16 77.25 11.23 71.36

BlaBla 15.03 68.82 14.58 62.55

5 Discussion

In this study, none of the tested segmentation algorithms produce superior seg-
mentations.

Fig. 1. Boxplots depicting the distribution of the best achieved accuracy across the
two tasks and segmentation algorithms.

Interestingly, however, the results show that segmentation, as such, does mat-
ter. Figure 5, containing a boxplot for each of the tasks and distributions of the
accuracy data over the randomized runs, depicts how the performance varies
within groups: in ranges up to 4%, and 8% in case of SNLI, and SST2, respec-
tively, which is a vastly larger range than that of the best achieved accuracy. In
comparison to the figures for standard deviation per configuration in the results
of [1] (about 0.2-0.3%), the numbers are significantly higher: ∼ 2%,∼ 1% for
SST2 and SNLI, respectively. However, it is important to stress that the varia-
tion in [1] is a result of 5 runs with different random seeds for the initialization of
the model parameters, while the source of variation in our work is the repeated
creation of random subsets of the corpus for the training of the segmentation al-



Extrinsic Evaluation of Segmentation Algorithms 9

gorithms, resulting in variability in model inputs. In order to pinpoint the cause
of this high variation, a further investigation of the segmentations is required.

In contrast to [1, 14], our results do not suggest the superiority of either the
Unigram model or the Morfessor. A first reason for this is that the benefits in
performance gained by using morphologically aligned segmentations get more
pronounced when training the segmentation on a large corpus, like in [1], such
that the compound and rare words are better learned and represented. A second
possible reason for the difference not being manifested via training a small-scaled
classifier can be simply due to lack of representative capacity of the model,
which a larger, multi-layer LSTM or a BERT model of [14, 1], respectively, does
provide. This would be especially important for discovering subtle improvements
provided by a particular segmentation of higher quality. Both of these factors
limit us to conclude that there is never a difference in segmentation quality
between the algorithms investigated. The results of the present study speak to
the mere difficulty of cheaply evaluating segmentation algorithms. In light of the
related work, one can conclude that, the shortest path to witnessing a difference
in segmentation quality is most likely measuring the perplexity of a language
model of reasonable expressive power, as demonstrated in [14].

6 Conclusion

Based on the presented evidence, we cannot conclude that there is any particular
ranking of the quality of the segmentations produced by the tested algorithms
when probed via a simple text classifier. Still, segmentation itself may cause
significant difference in a downstream task, the reasons of which have yet to be
determined.
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