Sudoku Assistant - An Al-powered app to help
solve pen-and-paper Sudokus

Tias Guns'2, Milan Pesa, Maxime Mulamba'?, Ignace Bleukx!, Emilio
Gamba!-2, and Senne Berden!

! KU Leuven, Belgium, firstname.lastname@kuleuven.be
2 Vrije Universiteit Brussel, Belgium, firstname.lastname@vub.be

The Sudoku Assistant app is an Al assistant that uses a combination of ma-
chine learning and constraint programming techniques, to interpret and explain a
pen-and-paper Sudoku scanned with a smartphone. Although the demo is about
Sudoku, the underlying techniques are equally applicable to other constraint
solving problems like timetabling, scheduling, and vehicle routing.

System overview

Digit classification - prediction After a picture of a Sudoku puzzle is taken with
the app, the picture is segmented into 81 cells. A pre-trained convolutional neural
network (CNN) is then applied to each cell in order to make a digit prediction.
For each cell, the output of the CNN is a probability distribution over the 10
possible values: digits 1-9 and the empty cell value.

Classification and Solving After the probability distributions have been pre-
dicted, a naive approach would simply assign to each cell the value with which
the largest probability has been associated (i.e., the argmax). This partial Su-
doku can then be given to a constrained satisfaction (CSP) solver, together with
the puzzle constraints, to obtain the full solution. However, consider that with
this approach, even a CNN with an accuracy of 99% would lead to a correct
solution only approximately 0.993! = 44% of the time. This is the case because
even a single misclassification almost always leads to a wrong solution or no
solution at all.

Error correction - hybrid of prediction and reasoning Therefore, we proposed
an alternative approach in [4], which features a deeper integration of the digit
classification and the reasoning required to solve the Sudoku puzzle. This ap-
proach is schematically shown in Fig.1. The main idea is to not provide the
constraint solver with merely the argmax prediction for each of the Sudoku’s
cells, but rather with the full distributions outputted by the CNN. It is then
tasked to find the maximum likelihood solution that satisfies the Sudoku con-
straints, given the class probabilities. Thus, the solver now solves a constrained
optimization problem (COP), rather than a CSP. Effectively, our hybrid ap-
proach allows the reasoning to correct some of the mistakes made by the CNN
classifier. This allows it to solve significantly more Sudoku problems correctly
compared to the naive approach.

2 T. Guns et al.

a8 H . ’
% SEa— i P :
3 il — i P
T i [
491 6 3] H I
ik \@ : i b
3 e ; P
- 1 o

2x Convolution + Max pool layer

2x Fullly
i connected
layer

Fig.1: The hybrid prediction-and-reasoning approach.

Providing hints - reasoning A user might be stuck during the solving when faced
with a challenging Sudoku. The Sudoku Assistant showcases a hint mechanism
that provides the easiest next move among all empty cells. The provided hint
highlights which existing digits and constraints can be used to derive that cells
value. To make sure the provided hints are easy to understand, we rely on a
cost function that should approximate human understandability, e.g., taking the
number of constraints and digits into account, as well as an estimate of their
cognitive complexity. The underlying technology for computing the hints uses
a constraint solver to find an Optimal Unsatisfiable Subset (OUS) of a derived
unsatisfiable formula for (the negation of) each of the empty cells [1,2].

6 a ; b — 1 5 1

3 7 g [0 |Ts—Th-T Tk 8

8| |2]9] 6] [} [Ts_Tp=o_ - o

4 9 Ca= _1_ r 1. 4 4 9 1 . 4 3

1 2 8 1 | 27 s _| 8 8
B 1 8 2 T rh=rTe T2 T 1 8 2 1 8 2
9 8 3 P r _8_ T Th=s=T 9 8 H'x 9 8 5 3§k
3] ‘ 4 i i PR N p 3 a
E [5] [2]6]1 T Ts= Th=e=17] 5 2 6 1 5 2061

(a) (b) (©) (d)

Fig. 2: Camera picture of a sudoku (a) with predicted probaiblities for the 81
cells (b). Error correction (in red) by the hybrid of prediction and reasoning (c).
Visualisation of the hint (d) where the highlighted constraints (blue boxes) and
given digits (yellow cells) derive a new value at the puzzle piece.

Implementation The app is implemented in React-Native. All neural network
and constraint solving computations happen on a remote server. The CNN is
composed of a VGG-inspired network [7], pre-trained on the Street View House
Numbers dataset [5]. The last layer is replaced by a two-layers fully-connected
neural network, tuned for our classification task using labeled data acquired
from the app. All neural networks are implemented with PyTorch 1.10 [6]. All
reasoning (the hybrid reasoning and explanation generation) is implemented in
the CPMpy 0.9.9 constraint solving environment [3].

Sudoku Assistant 3

Acknowledgements

This research received partial funding from the Flemish Government (AI Re-
search Program); and funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation program (Grant
No. 101002802, CHAT-Opt).

References

1. Bogaerts, B., Gamba, E., Guns, T.: A framework for step-wise explaining how to
solve constraint satisfaction problems. Artificial Intelligence 300, 103550 (2021)

2. Gamba, E., Bogaerts, B., Guns, T.: Efficiently explaining CSPs with unsat-
isfiable subset optimization. In: Zhou, Z.H. (ed.) Proceedings of the Thirti-
eth International Joint Conference on Artificial Intelligence, IJCAI-21 (2021).
https://doi.org/10.24963 /ijcai.2021/191

3. Guns, T.: Increasing modeling language convenience with a universal n-dimensional
array,cppy as python-embedded example. In: The 18th workshop on Constraint
Modelling and Reformulation (ModRef 2019) (2019)

4. Mulamba, M., Mandi, J., Canoy, R., Guns, T.: Hybrid classification and reasoning
for image-based constraint solving. In: International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research. pp. 364—
380. Springer (2020)

5. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Read-
ing digits in natural images with unsupervised feature learning. NIPS (2011),
http://ufldl.stanford.edu/housenumbers

6. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: NIPS
Autodiff Workshop (2017)

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015), http://arxiv.org/abs/1409.1556

