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Abstract. We study Markov decision processes (MDPs) that exhibit
explicit measuring actions with associated observation costs. In partic-
ular, we aim to balance these observation costs with the value of the
information gained by measuring. For this goal, we firstly define Fully
Measurable MDPs as an extension of MDPs to represent our problem.
Then, we develop a Q-learning based agent that learns to optimise the
total scalarized reward, defined as the standard reward minus the ob-
servation cost. The agent uses an optimistic exploration strategy based
on a Q-table biased towards unexplored states-action pairs. The decision
of whether to take a measure is based on two newly introduced met-
rics. These metrics approximate (1) the value of improving the accuracy
of estimating the underlying MDP, and (2) the value of knowing the
current state according to this estimated MDP. The empirical analysis
shows that our method is able to dynamically switch between information
gathering and exploitation in different environments without requiring
environment-specific hyper-parameter tuning, while outperforming prior
algorithms in the tested environments.

1 Introduction

In recent years, Partially Observable Markov Decision Processes (POMDPs)
have become widespread for modelling and solving real-world problems[8, 16,
17]. Although POMDPs can accurately describe the noisiness of real-life obser-
vations, they do not generally take into account costs or constraints that might
be associated with making observations in the first place. For example, railway
companies have to make decisions about where and how often to inspect cer-
tain sections of rails, and hospitals with limited diagnostic resources might have
to consider which patients can make use of them, and for who less accurate
diagnostic methods suffice. In both cases, being able to make these decisions re-
quires a model, but getting such a model also requires some initial observations.
To model these situations more accurately, prior work proposed a framework in
which both these kinds of observations have associated costs [3, 19]. However, it
is still an open question how to take in account the uncertainty of the current
state when deciding whether or not to measure.

In short, this paper has the following aim:



Develop reinforcement learning algorithms that (1) can actively
learn the dynamics of the underlying environment, while taking into
account the costs for taking measurements, and that (2) eventually
find policies that are able to trade off the cost of taking measures
and the value of the information gained.

To achieve this goal, we propose to track the belief state and use it while com-
puting the value-function and deciding whether or not to measure. Furthermore,
we introduce two metrics for the value of measuring, used while exploring the
environment and while exploiting it. We compare the performance of our new
agent with an AMRL agent (AMRL-Q) [3], both in standard RL-environments
and in a minimum environment that showcases the value of measuring.

Section 2 discusses related previous research. Section 3 formalizes the problem
and reviews prior work. Section 4 introduces Belief-based Active Measure QMDP
(BAM-QMDP) as a new agent for these environments. Sections 5 and 6 describe
both the setup and results of our empirical analysis. Lastly, Section 7 evaluates
the performance of BAM-QMDP and Section 8 summarizes our findings.

2 Related work

To our knowledge, there exist only two algorithms for solving active-measure
problems. The first is the ARML-Q algorithm introduced by Bellinger et al.
[3], which is the main inspiration for the current work. Section 3.2 presents a
comparison between AMRL-Q and BAM-QMDP and Section 6 compares them.

The second is the ACNO-MDP framework introduced by Nam, Fleming,
and Brunskill [19]. Their general strategy involves transforming the problems to
POMDPs and solving these using existing RL algorithms. They distinguish two
variants: one in which these two tasks are done simultaneously, and one where
they are split. The latter performs slightly better given enough exploration time,
but the former most closely resembles our approach.

Another closely related work is that of Doshi-Velez, Pineau, and Roy [10].
They introduce a framework in which agents explore a POMDP, but have the
additional option to make ‘action queries’ to a oracle. The general method they
use is comparable to ours, their concept of ‘Bayesian Risk’ resembles the concept
of ‘Measurement Regret’ introduced in this paper. However, since their method
relies on a different way of measuring, results cannot easily be compared.

We also note some other related papers, which explore active measure learn-
ing in different contexts. Yin et al. [23] propose a method for AMRL which relies
on a pre-trained neural network to infer missing information with the measured
data. Ghasemi and Topcu [14] propose a method to choose near-optimal measure-
ments on a limited budget per step, which can be used to improve pre-computed
‘standard’ POMDP policies. Bernardino et al. [4] try solve the task of diagnosing
patients using an MDP-approach, in which the action themselves correspond to
taking measurements. Lastly, Araya-López et al. [1] study how to approximate
an MDP without any reward function.



3 Background

3.1 Defining our framework: ACNO-MDPs and AMRL

Following work from Nam, Fleming, and Brunskill [19], and in agreement with
definitions from Bellinger et al. [3], we define our problem as an Action-contingent
Noiselessly Observable MDP, or ACNO-MDP for short. Intuitively, ACNO-MDPs
are systems described by MDPs, in which the agent can only observe the current
state by making an (active) measurement, with related cost.

An ACNO-MDP is defined by a tuple (S, Ã = A×M,P,R,C,Ω,O, γ), where
(S,A, P,R, γ) are the components of a standard MDP: S is the state space, A
is the action space, P (s′|s, a) is the transition function, R(s, a) is the reward
function and γ ∈ [0, 1] is the discount factor. However, in the ACNO-MDP
framework Ã consists of actions and measurements pairs. These are tuples of the
form ã = (a,m) ∈ A×M , where M = {not observe, observe} = {0, 1}. Control
actions a affect the environment, while m ∈ M only affects what the agent
observes. Following the typical notation from POMDPs, Ω is the observation
space and O the observation function, so O(o|s′, (a,m)) is the probability of
receiving observation o ∈ Ω when taking measurement m and action a, after
transitioning to the state s′. In ACNO-MDPs all measurements are complete and
noiseless, so we can define Ω = S∪{⊥}, where ⊥ indicates an empty observation.
Then, the observation function is defined asO(o|s′, (a, 1)) = 1 ⇐⇒ o = s′, and 0
otherwise. Similarly, O(o|s′, (a, 0)) = 1 ⇐⇒ o = ⊥, and 0 otherwise. Measuring
has an associated cost C(m) ≥ 0, which gets subtracted from our reward, giving
us a scalarized-reward r̃t = R(st, at)− C(mt).

In an ACNO-MDP, the environment starts in some initial state s0. For each
time-step t, the agent executes an action-pair (at,mt) according to a policy π
that maps past interactions with the environment to actions. In general, the
policy is defined for a belief state bt, a distribution over the states representing
the probability of being in each state of the environment summarizing the past
interactions with the environment. Then, the environment transitions to a new
state st+1 ∼ P (· | st, at), and returns to the agent a reward rt = R(st, at), a
cost ct = C(mt) and observation ot+1 ∼ O(· | st+1, (at,mt)). In this paper, we
focus on reinforcement learning in ACNO-MDPs, meaning we assume the agent
only has access to the total number of states and the variables returned at each
step, but otherwise has no prior information about the environment. Therefore,
the goal of the agent is to compute a policy π with the highest expected total
discounted scalarized-reward Eπ [

∑
t γ

tr̃t] .

3.2 The AMRL-Q agent

Bellinger et al. [3] proposed to solve the ACNO-MDP problem using an adapta-
tion of the Q-learning algorithm [22]. To choose the best action pair, the agent
estimates return with a Q-table Q of size (S× Ã), and the transition probability
function with a table P̂ of size (S × A × S). P̂ is initialised uniformly. Q is



initialised uniformly, except that for all action-pairs with m = 1 are given some
initial bias to promote measuring in early episodes.

Beginning at the initial state, for every state st the agent executes an ϵ-greedy
action-pair (at,mt) according to Q. When mt = 1, the successor state s′ = st+1

is observed so the algorithm updates the transition probability P̂ (· | st, at).
When mt = 0, AMRL-Q does not update P̂ and assumes the successor state is
the most likely next state given P̂ :

s′ = argmax
s∈S

P̂ (s | st, at).

Using the reward rt and the (potentially estimated) successor state s′, AMRL-Q
updates both Q(st, (at, 0)) and Q(st, (at, 1)), as follows:

Q(st, (at,m))←− (1− α) Q(st, (at,m))

+ α

[
(rt − C(m)) + γ max

a′,m′
Q(s′, (a′,m′))

]
.

(1)

After this update, we reset the environment if a terminal state is reached, and
begin picking an ϵ-greedy action-pair again.

3.3 Agent shortcomings

The AMRL-Q agent has two main drawbacks. Firstly, the current choice of
measuring depends solely on the initialisation of the value estimator. Since Q
gets updated for all possible m-values every actions, and (rt+1−C(m)) is always
lower for m = 0, Q will eventually favour not measuring after enough updates.
This behaviour can be useful in contexts where the final policy may not require
taking any measurements, but may be sub-optimal in stochastic environments,
where it is important to identify the outcome of the action executed.

Secondly, the current algorithm does not make a distinction between belief
states and measured states. Although the choice of m influences whether or not
P̂ gets updated in each step, the estimated state is assumed to be the actual
state of environment after that step. This meansQ(st, at,m) always gets updated
using the values for st+1, even if st+1 is a wrong estimation of the next state.
Similarly, for the next step P̂ (st+2|st+1, at+1) may be updated incorrectly too.

4 Solving ACNO-MDPs: The BAM-QMDP algorithm

For reinforcement learning in ACNO-MDP settings, we propose the Q-learning
based algorithm Belief-based Active Measure QMDP, abbreviated as BAM-QMDP.
Pseudocode for the complete algorithm can be found in Appendix A, while the
next sections will go through its features in more detail.



4.1 Basic Structure

The basic structure of BAM-QMDP follows that of a regular Q-learning algo-
rithm, but with two major changes. Firstly, we incorporate active measuring by
making the choice of whether or not to take a measurement an explicit part of
the algorithm. Secondly, we introduce belief states bt to approximate the current
state if it has not been measured. We use a Q-table Q (of size S ×A, initialised
with 0’s) to keep track of estimated returns, and a transition function P̂ (of size
S×A×S, initialised with probabilities 1/|S|) to estimate the transition function.
Starting in some initial (known) belief state b0, our algorithm repeatedly goes
through the following steps (as also given in Algorithm 2, see Appendix A):

– Greedily find an action at to take, according to Qt;
– Compute bt+1, our next belief state after taking this action (Section 4.2);
– Decide whether or not to measure (mt), based on bt+1 (Section 4.3);
– Take action-pair (at,mt), receiving scalarized reward r̃t and observation o;
– If mt = 1, replace bt+1 by a belief state representing o;
– If mt = 1, update P t+1 (Section 4.2);
– Update Qt+1 (Section 4.2).

This process repeats until our episode is over, after which the BAM-QMDP+
variant performs a global update of Q to speed up convergence (Section 4.4).
Then we record our data and reset our belief state to b0.

4.2 Implementing Belief States and Optimism

In BAM-QMDP, we implement basic belief states as discrete probability distri-
bution over the states, with bt(s) denoting the (estimated) probability of being
in state s at time t. After measuring, we have a deterministic belief

bt+1(s) =

{
1 if s = st+1

0 otherwise.

After taking an action without measuring, we calculate belief state bt+1 given
previous belief state bt, action at and probability table P , we use a Monte-Carlo
approach to sample our next belief state. Concretely, this has the following steps
(as also described in Algorithm 3):

1. sample N states st,i according to bt;
2. sample N next states st+1,i according P (· | st,i, at), one for each st,i; and
3. combine these into our new probability distribution bt+1:

bt+1(s) =

∑
I(st+1,i = s)

N
.

To express our transition function, we implement a slightly altered version
of the BAMDP-framework as introduced by Dearden, Friedman, and Andre [9].
In this framework, we represent our transition function P (·|s, a) by a Dirichlet



distribution Dir(s, a), parameterized by α⃗s,a = {αs,a,s0 , αs,a,s1 , ...}. In a MDP-
settings, αs,a,s′ is given by some initial bias (in our case uniform), plus the

number of times the transition s
a−→ s′ has occurred. However, in our partially

observable setting, we cannot be certain of the latter. Instead, we interpret this
as the number of times we have already measured this transition, but weighted
by our belief. Updating our transition function, than, can be done using the
following formula (as also described in Algorithm 5

αt
s,a,s′ =

{
αt−1
s,a,s′ + bt−1(s) if at−1 = a ∧ st = s′ ∧mt = 1

αt−1
s,a,s′ otherwise.

(2)

Using this, we get our transition probabilities using the expected value for Dirich-
let distribution: E[P (s, a, s′)] = αs,a,s′/

∑
s′′∈S αs,a,s′′ .

Implementing Q-learning in an environment with partial observability is a
non-trivial task. For POMDPs, the problem is sometimes solved by using a
neural network to estimate Q-values [11, 24, 15], inspired by similar methods
for regular MDPs such as Deep Q-Learning [18]. For our algorithm, we instead
choose a simpler and more direct method, in which we keep our standard Q-table
but update it according to our belief state. Inspired by Even-Dar and Mansour
[12], we implement this by introducing a weighted linear asynchronous learning
rate ηt(s, a), defined as:

ηt(s, a) =
bt(s)

N t
Q(s, a)

, (3)

where N t
Q is a (weighted) counter for the number of times state-action pair (s, a)

has already been visited:

N t
Q(s, a) =

{
N t−1

Q (s, a) + bt(s) if at = a ∧ st = s

N t−1
Q (s, a) otherwise.

(4)

We note that ηt(s, a) = 0 if bt(s) = 0, as required, and otherwise scales
such that Qt(s, a) is always the average estimated return of all visits.1 Since we
already have an estimate of the transition function, we use it to approximate
the future return:

Ψ(s, a) =
∑
s′∈S

P t(s′ | s, a)max
a′

Qt(s′, a′). (5)

Using these, our Q-update function becomes:

Qt(s, a) = (1− ηt(s, a)) ·Qt−1(s, a) + η(s, a)
[
r̃t + γ Ψ(s, a)

]
(6)

Lastly, instead of relying on an ϵ-greedy policy for exploration, we implement
a simple form of optimism inspired by RMAX into our return estimation [6]. For

1 The latter is relatively common in Monte-Carlo based RL-algorithms, such as Gelly
and Silver [13]



this, we define a number of optimistic tries Nopt, representing for how long an
action should be biased towards exploration. We then define the optimistic return
estimation Qt

opt(s, a) as the maximum value Q(s, a) could have after Nopt tries,
given its current value:

Qt
opt(s, a) = N t

Q(s, a) ·Q(s, a) + (Nopt −N t
Q(s, a)) ·Rmax, (7)

where Rmax is a parameter representing the (estimated) maximum return an
action could give. For any s and a where N t

Q(s, a) < Nopt, our algorithm will

use Qt
opt(s, a) instead of Qt(s, a)2. For a complete overview of a Q-update, see

Algorithm 6

4.3 Active Measuring: Transition Support & Measurement Regret

Using the algorithm of the previous section as a basis, we now need to add some
functionality to decide when to take measurements. We notice that there are
two distinct reasons for wanting to measure: either to improve the accuracy of Q
and P (i.e. exploration), or to improve our immediate expected return. The next
sections describe two basic metrics to express these, after which we will describe
how they are used in BAM-QMDP.

Transition Support At any point in time after deciding to take some action
at, the agent estimates its next belief state bt+1 according to P̂ . However, if our
agent has not done a lot of exploration yet, this belief state could be inaccurate.
Supposing the agent knew for certain its current state was st and took action at,
an intuitive metric of accuracy would be N t

P (st, at), as defined in the previous
section. However, since the previous state is generally not known, we define the
transition support Sup(bt, at) as the weighted sum of all these measurements
from the current belief state, that is:

Sup(bt, at) =
∑
s∈S

bt(s) ·N t
P (st, at). (8)

Measurement Regret As mentioned in Section 3.2, one way to expand upon
the AMRL-method is by making more explicit the value of taking measurements.
As an example of this problem, let us assume that we are in the belief state
visualised in Fig. 1. For a such simple belief state in a normal POMDP, the
optimal action can be found by calculating which action on average would give
the highest reward. We’ll call this the belief-optimal action abo, and define it as

abo(b) = max
a∈A

∑
s∈S

b(s)Q(s, a). (9)

2 The main difference between RMAX and our approach is that our optimistic Q-
values gradually converge to the measured values (like is common in UCB-based
methods [2]), while in RMAX the change is sudden.



Fig. 1: An example of a simple belief state.

In Fig. 1, for example, a0 is belief-optimal with an expected return of 0.8. When
taking measuring into account, we can simply look at the difference in return
between the belief-optimal action (as taken when not measuring) and the ’actual’
state-optimal action (taken if the current state is known), at each state. We refer
to this difference as the Regret of not measuring R. For a single state and a given
abo, R can be calculated using

R(abo, s) = Q(s, abo)−max
a∈A

Q(s, a), (10)

which can be expanded over the complete belief state as

R(abo, b) =
∑
s∈S

b(s)R(abo, s). (11)

=
∑
s∈S

b(s)
[
Q(s, abo)−max

a∈A
Q(s, a)

]
(12)

For our example, R(abo, s0) = 0 (since abo matches the optimal action in this
state), and R(abo, s1) = 1, giving a total Loss R(abo, b) = 0.2. In other words,
having full information on the state we are in would on average yield us an
added reward of 0.2. In our algorithm, before taking a measurement we com-
pute both b and abo for the next state, and decide to measure the next state if
R(at+1,bo, bt+1) > C(mt).

Combining the two conditions above, the decision of whether or not to mea-
sure is made in the following way:

mt =

{
observe if Sup(bt, at) ≤ NO ∨R(at+1,bo, bt+1) ≥ C(mt)

not observe otherwise
(13)

4.4 Speeding up Convergence: Global Q-updates & BAM-QMDP+

Although Q-learning is in general a model-free RL-algorithm, both AMRL and
BAM-QMDP use an estimated transition function to model their environment.



To test if this information can be exploited further, we implement a global Q-
update function, in which we alter all values of the Q-table based on the current
model, without taking into account previous Q-values explicitly. We do this by
repeatedly updating (randomly chosen) Q-values, using the following formula:

Q(s, a) = R̂(s, a) + γΨ(s, a), (14)

where R̂(s, a) is the average immediate reward recorded for (s, a), and Ψ(s, a)
is the estimated future return (Eq. (5)). In our algorithm, we keeps doing such
updates until no states maximum Q-value is changed by more than a factor δ,
as shown in Algorithm 7.

5 Experimental Setup

In this section, we describe the experimental setup to test BAM-QMDP and
BAM-QMDP+, and compare both with AMRL-Q. We consider both standard
RL-environments interpreted as ACNO-MDPs and a new environment designed
to test the metric of measurement regret. The code to reproduce the experiments
can be found on https://github.com/MKrale/BAM-QMDP/tree/BNAIC.

5.1 Algorithms & Hyper-parameters

We test the following algorithms:

– AMRL-Q : the agent as described by Bellinger et al. [3].
– BAM-QMDP : the agent described in Section 4 without the global Q-update.
– BAM-QMDP+: the same as BAM-QMDP, except with the global Q-update

as described in Section 4.4 enabled (see Algorithm 1).

For BAM-QMDP and BAM-QMDP+, we note that there are only 4 hyper-
parameters to tune: the number of optimistic tries Nopt, the minimal required
support Nsup, the number of particles N used for the belief updates, and the
accuracy parameter δ for the global Q-update. We set N = 100 and δ = 10−4.
For Nopt and Nsup, optimal values depend on the environment used, so for these
more fine-tuning is required. However, both parameters relate to very concrete
conditions (particularly, the number of state-action visits required before switch-
ing from biased to unbiased behaviour), which makes it possible to reason about
them intuitively. For all our testing, we will set Nopt = Nsup = 10, which gives
good results on all environments.

For AMRL-Q, we set both ϵ and bias-factor β to 0.1, in accordance with
the settings mentioned in the original paper. We keep these parameters equal
for every environment tested, which is something BAM-QMDP was designed
for, but AMRL-Q was not. For this reason, the performance of AMRL-Q in
our testing is slightly worse than could be achieved with more hyper-parameter
optimisation.



Fig. 2: The Measurement Regret environment used to test if an agent is able to
determine the value of measuring.

5.2 Environments

This section describes the environments used for the experiments. All problems
use a discount factor γ = 0.95.

Chain. This environment consists of n states (s0, s1, · · · , sn−1) connected as a
chain, where s0 is the initial and sn−1 the final state [21, 1]. Reaching the final
state yields a reward r = 1, at every other step the agent gets a time penalty
of r = −0.01. Measuring cost is set to c = 0.05. The agents choose from action
space A = {backwards, forwards}: the first one brings the agent back to s0, the
second moves it from si to state si+1

3. Although the environment is simple, by
choosing a large value for n, we can use it to discover if an agent is able to
discover simple but long policies.

Measurement Regret. As a simple environment to test Measurement Regret, we
convert our example from Fig. 1 to a graph, as shown in Fig. 2. This environment
consist of three state S = {s0, s+, s−}, with s0 as the initial state. Our agent
can choose actions from action space A = {a0, a1}, where a0 always returns the
agent to the initial state. From state s0, taking action a1 results in a transition
to s+ with probability p, and a transition to s− with probability p − 1. Taking
action a1 in the states s+ and s− ends the episode and returns rewards r = 1
and r = 0, respectively. For our specific testing, we choose p = 0.8 and c = 0.1,
which means the optimal policy is to always measure in states s+ and s−.

Frozen Lake. As a more complex toy environment, we use the standard openAI
gym Frozen Lake environment [7], which describes an n× n grid with a number
of ’holes’. The goal of the agent is to walk from its initial state to some goal
state without landing on any hole spaces. The agent receives reward r = 1 if it
reaches the goal, and r = 0 otherwise. The episode ends once the agent reaches
the goal state or a hole tile. For simplicity, we only use the pre-defined 8 × 8
(’large’) map setting, adding a measuring cost c = 0.01.

3 This is slightly different from the environment used in [3], in which the back -action
returned the agent just one space.



Table 1: Average scalarized return and number of measurements for AMRL-Q,
BAM-QMDP and BAM-QMDP+ after training. Results are gathered over 25
repetitions, and present the average over the last 500 of 5000 total episodes.

Chain
Measurement

Regret
Frozen Lake

(deterministic)
Frozen Lake
(slippery)

Frozen Lake
(semi-slippery)

Scalarized Return (higher is better)

AMRL-Q 0.69 0.36 0.02 0.01 0.10
BAM-QMDP 0.79 0.85 1.00 0.02 0.56
BAM-QMDP+ 0.80 0.82 1.00 0.01 0.43

Number of Measures (lower is better)

AMRL-Q 0.78 0.55 0.51 0.61 0.34
BAM-QMDP 0.00 0.83 0.00 0.35 5.04
BAM-QMDP+ 0.00 0.25 0.00 2.79 6.32

The agent has action space A = {Left,Down,Right, Up}, but we consider
three variations of the . Firstly, we use both the predefined deterministic and non-
deterministic (or slippery) settings from the standard gym. In the deterministic
case, the agent is always moved in the given direction, in the non-deterministic
case it is moved in any direction except the direction opposite to the given one,
with equal probability (so given a = Left, the agent can move Up,Left or
Down, all with probabilities p = 1/3). We also tested a more predictable semi-
slippery setting, where the agent would always move in the given direction but
has a 0.5 chance of moving two spaces instead.

6 Results

The results of running AMRL-Q, BAM-QMDP and BAM-QMDP+ over 25 rep-
etitions in the environments can be found in Table 1 and Figs. 3 and 4. Below,
we give a brief summary of the most important results for each environment:

Chain. For our first test, we run the three algorithms on the chain environment
with n = 20. As can be seen in Fig. 3a, all algorithms converge quickly. However,
AMRL-Q converges to a policy yielding a scalarized return of 0.69 on average,
while both BAM-QMDP agents yield approximately 0.8.

Measurement regret. Figure 3b shows the performance of all three agents in
the custom measurement regret environment. As expected, both our algorithms
perform significantly better than AMRL-Q, with average scalarized return of
0.41 for AMRL-Q, and 0.85 and 0.82 for BAM-QMDP and BAM-QMDP+.

Deterministic lake environment. In Fig. 3c, we find that AMRL-Q is only able
to achieve a low positive scalarized return of 0.02 in the deterministic lake envi-
ronment. In contrast, both BAM-QMDP and BAM-QMDP+ are able to find an



(a) Chain (n=20) (b) Measurement regret

(c) Deterministic lake (d) Slippery lake

Fig. 3: Plots of the average scalarized return per episode for AMRl-Q, BAM-
QMDP and BAM-QMDP+, in 4 different environments.

optimal strategy yielding a scalarized return of 1, although the latter converges
to this policy quicker.

Slippery lake environment. As can be seen in Fig. 3d, we find that all agents
converge to policies yielding similar scalarized return of approximately 0. Both
BAM-QMDP and BAM-QMDP+ take more measurements in early episodes,
giving them slightly lower average scalarized return in early episodes.

Semi-slippery lake environment. In Fig. 4a, we see that in the less random slip-
pery lake environment, on the one hand BAM-QMDP and BAM-QMDP+ are
able to achieve scalarized return of 0.56 and 0.42. On the other hand, AMRL-Q
is still only able to find a policy with scalarized return of 0.01

7 Discussion

Based on the results in the previous sections, we make the following observations:



(a) Average scalarized return. (b) Average number of measurements.

Fig. 4: The average return and number of measurements per episode for AMRL-
Q, BAM-QMDP and BAM-QMDP+ in the slightly slippery lake environment.

Measurement regret works as a metric for valuing measurements. In Table 1,
BAM-QMDP achieves returns higher than 0.8, the return of the optimal non-
measuring policy. Since after initialisation measuring is only governed by mea-
surement regret, we conclude it works as a metric for valuing measurements.

Measurement regret does not ensure policies with optimal measurements. To
determine the optimal return for a policy which may include measuring, we note
that in such policies we always measure in both s+ and s−, since we cannot
distinguish these states. In s+, this returns (1 − c), and in s− this gives the
average return of s0 minus c. Putting this together, we find we can calculate the
return of this policy with following infinite sum:

Eπ

[∑
t

γtr̃t

]
=

∑
n=0

(
p ·

(
1− p

)n(
1− c(n+ 1)

))
, (15)

where n is the number of measurements required. Using our values for p and c,
we find an optimal return of 0.875. Although the return for BAM-QMDP comes
close to this, we see it is still lower, showing that our algorithm is not able to
determine the value of measuring perfectly.

Measurement regret yields non-measuring policies in deterministic environments.
As seen in Table 1, both variants of BAM-QMDP make no measurements in the
last 500 episodes in the deterministic environments (chain and deterministic
frozen lake). On the other hand, for non-deterministic environments it generally
converges to policies which do include measurements. After convergence, we see
AMRL-Q takes measurements in both stochastic and non-stochastic environ-
ments alike due to it’s ϵ-greedy policy, but otherwise never measures.



In simple environments, BAM-QMDP yields policies with higher scalarized re-
turn than AMRL-Q. Table 1 shows both versions of BAM-QMDP achieve higher
scalarized return than AMRL-Q for all environments, except the Slippery Lake
environment, where none of our algorithms were able to reach the goal consis-
tently.

Although unoptimised now, BAM-QMDP has the potential to be scaled to larger
environments. To be useful for large problems, an algorithm should scale well
with S × A in terms of both time complexity and convergence speed. For the
former, we note that sampling, finding an action and updating Q or P all take
O(A ·NP ) time. This means running time only scales with A,Np and the length
of the paths taken. Convergence rates of value iteration algorithms generally
scale poorly with S × A, but offline training methods such as used in BAM-
QMDP+ can easily overcome this. Note, though, that for this to be useful, their
time complexity should also be low, which is not the case for BAM-QMDP+.

8 Conclusion

In this paper, we studied how to solve MDPs with explicit measurement ac-
tions with associated costs. For this framework, we propose two versions of the
Q-learning based algorithm BAM-QMDP. The empirical analysis shows that
both versions outperform previous algorithm in terms of return of final policy,
in both deterministic and non-deterministic environments. Future work include
exploring partial measurements, for instance dealing with factored spaces [5].
Furthermore, we could extend our approach to setting with limited measuring
budget [14], considering the measuring costs are known, we could try to learn a
policy without violating the budget constraints [20]. Finally, we are also inter-
ested in extending this approach to larger environments [15].
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A Algorithm Pseudocode

Algorithm 1 BAM-QMDP(episodes)

for s, s′ ∈ S and a ∈ A do
Set αs,a,s′ = 1/|S|, NQ(s, a) = 0
Set Q(s, a) = 0, Qopt(s, a) = 1, R(s, a) = 0

Set rtotal = 0
for i <episodes do

reps, Q,Qopt, α⃗, R
← RunEpisode(Q,Qopt, α⃗, R, b0)

rtotal ← rtotal + reps
if global update enabled then

UpdateQGlobally(Q,P )

returnrtotal

Algorithm 2 RunEpisode (Q,Qopt, α⃗, R, b0)

b← b0
repisode = 0
while episode not done do

a←−FindGreedyAction(Qopt, b)
bnext ←−SampleNextBelief(P,b,a)
abo ←− maxa∈A

∑
s∈S b(s)Qopt(s, a)

m←− Sup(b, a) > Nsup ∧R(bnext) < c
take action (a,m)→ (o, r)
Q,Qopt, R← UpdateQ(P,Q, b, a, o, r)
if m = 1 then

P, α←UpdateP(α⃗, b, a, o)
b← o

else
b← bnext

repisode ← repisode + r

returnrepisode, Q,Qopt, α⃗, R

Algorithm 3 SampleNextBelief(P, b, a)

for i < N do
st,i ∼ b
st+1,i ∼ P (st,i, a, ·)

for s ∈ S do
b(s)←

∑
I(st+1,i=s)

N

return b

Algorithm 4 FindGreedyAction(Q, b)

initialise Qb(a) = 0,∀a ∈ A
for (s, a) ∈ S ×A do

Qb(a)← Qb(a) + b(s)Q(s, a)

return argmaxa∈A Qb(a)

Algorithm 5 UpdateP(α⃗, b, a, o)

for s ∈ S do
αs,a,o ← αs,a,o + b(s)
for s′ ∈ S do

P (s′ | s, a) = αs,a,s′/
∑

s′′∈S αs,a,s′′

returnP, α⃗

Algorithm 6 UpdateQ(P,Q,R, b, a, o, r)

for s ∈ S do
R(s, a)← R(s,a)NQ(s,a)+b(s)r

NQ(s,a)+b(s)

NQ(s, a)← NQ(s, a) + b(s)

η(s, a)← b(s)
NQ(s,a)

Ψ =
∑

s′′∈S P (s′′ | s′, a)maxa′′ Q(s′′, a′′)
Q(s, a)← [1− ηs,a]Q(s, a) + ηs,a[r + γΨ ]
if NQ(s, a) < Nopt then

Qopt(s, a)← Q(s,a)·NQ(s,a)+(NO−NQ(s,a))

NO

else
Qopt(s, a)← Q(s, a)

returnQ,Qopt, R

Algorithm 7 UpdateQGlobally(Q,P,R)

L← S
while L not empty do

Qprev ← Q
s← argmaxs Q(s, a)
for [s′, a′|P (s, a′, s′) > ϵ] do

Ψ =
∑

s′′∈S P (s′′ | s′, a)maxa′′ Q(s′′, a′′)
Q(s′, a′) = R+ γPsi
for [s′′ ∈ S|∃a′′ ∈ A,

|Qprev(s
′′, a′′)−Q(s′′, a′′)| ≥ δ] do

L← L ∪ s′′

L← L \ s


