
SECLEDS: Sequence Clustering in Evolving
Data Streams via Multiple Medoids and Medoid

Voting (Encore abstract)

Azqa Nadeem and Sicco Verwer

Delft University of Technology, The Netherlands
{azqa.nadeem,s.e.verwer}@tudelft.nl

Abstract

Stream clustering is the problem of clustering an unbounded stream of data
items in a single pass. Sequence clustering in a streaming setting is challenging
because i) the data stream might contain concept drift, and ii) the sequences
themselves might be out-of-sync, making them expensive to cluster. K-medoids
or Partitioning Around Medoids (PAM) is commonly used for sequence cluster-
ing because it supports arbitrary distance measures, e.g., the alignment-based
dynamic time warping (DTW) distance that is especially designed for sequences
[5,6]. The clusters generated by k-medoids are also interpretable since the k-
centers are represented by actual data items. However, even the most optimized
offline variants of k-medoids with a runtime of O(nlogn) [3,4] cannot be adopted
for streaming settings because they are prohibitively expensive and cannot han-
dle concept drift.

In the accepted paper [2], we propose SECLEDS – a lightweight streaming
version of the k-medoids algorithm. In order to support high bandwidth data
streams, SECLEDS does not store any part of the stream: it receives an item,
assigns it to one of the k-clusters, and then discards it. This way, SECLEDS has
a guaranteed constant memory footprint.

SECLEDS also has two unique properties: i) it produces stable and high-
quality clusters using multiple medoids per cluster, and ii) it minimizes the re-
quired number of distance computations by introducing an intuitive medoid vot-
ing scheme to estimate a cluster’s center of mass. SECLEDS maintains votes
for each medoid, estimating how representative it is based on the data seen so
far. A user-supplied decay factor allows SECLEDS to slowly forget the votes
regarding older data. The least representative medoids are then replaced with
new data items at each time step. This way, the clusters evolve with an evolving
data stream, without having to perform additional distance computations. This
allows SECLEDS to support computationally expensive distance measures, such
as DTW. The medoid voting scheme also enables SECLEDS to handle concept
drift using k-evolving clusters, instead of having to create new clusters for new
concepts like typical adaptive algorithms. SECLEDS is implemented in Python,
and is available open-source1.

1 SECLEDS: https://github.com/tudelft-cda-lab/SECLEDS

https://github.com/tudelft-cda-lab/SECLEDS


2 A. Nadeem et al.

Fig. 1. The performance of SECLEDS on synthetic point (blobs) and univariate se-
quence (sine-curve) clustering, given k clusters and p medoids per cluster. Sine-curve-
drifted is a drifted variant of the since-curve dataset (containing a univariate stream).

Testing on real and synthetic datasets, we empirically demonstrate that SE-
CLEDS produces stable and high-quality clusters regardless of stream size, data
dimensionality, concept drift, and number of clusters. We compare against three
popular stream and batch clustering algorithms, i.e., CluStream, StreamKM++,
and Minibatch k-means. We treat BanditPAM as a benchmark for the best
achievable clustering on an offline dataset. The results (given in Figure 1) show
that SECLEDS achieves comparable F1 score2 to BanditPAM, while reducing
the required number of distance computations by 83.7%. The runtime of SE-
CLEDS grows approximately linearly with stream size, while the F1 score re-
mains competitive with the best performing baselines. For a stream with concept
drift (sine-curve-drifted), SECLEDS outperforms all baselines by 138.7%, while
being faster than BanditPAM and CluStream.

As a use case, we employ SECLEDS for temporal pattern-preserving net-
work traffic summarization, i.e., preserving temporal patterns while network
traffic sampling so that we can use them for downstream tasks, e.g., behavior
analytics. To this aim, we cluster sequences of network traffic using SECLEDS
and periodically store the cluster medoids. On a real-world data stream, we show
that SECLEDS-dtw achieves an F1 score of 0.88 for k = 5 while BanditPAM
only gets 0.38. SECLEDS-dtw clusters the stream collected in ∼5.5h in less than
27 minutes, implying that it can support network bandwidths of up to 1.08 Gbps,
which is significantly higher than the needs of a typical enterprise network.

For future work, we are investigating how to make the medoids aware of each
other to improve the cluster coverage in a computationally efficient way.

2 F1 score is computed by comparing the pairwise co-occurrence of true labels [1].



SECLEDS: Sequence Clustering in Evolving Streams (Encore abstract) 3

References

1. Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval. Nat-
ural Language Engineering 16(1), 100–103 (2010)

2. Nadeem, A., Verwer, S.: Secleds: Sequence clustering in evolving data streams via
multiple medoids and medoid voting. Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(2022)

3. Schubert, E., Rousseeuw, P.J.: Faster k-medoids clustering: improving the pam,
clara, and clarans algorithms. In: SISAP. pp. 171–187. Springer (2019)

4. Tiwari, M., Zhang, M.J., Mayclin, J., Thrun, S., Piech, C., Shomorony, I.: Bandit-
pam: Almost linear time k-medoids clustering via multi-armed bandits. NeurIPS
33, 10211–10222 (2020)

5. Ushakov, A.V., Vasilyev, I.: Near-optimal large-scale k-medoids clustering. Informa-
tion Sciences 545, 344–362 (2021)

6. Wang, T., Li, Q., Bucci, D.J., Liang, Y., Chen, B., Varshney, P.K.: K-medoids
clustering of data sequences with composite distributions. IEEE Transactions on
Signal Processing 67(8), 2093–2106 (2019)


	SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple Medoids and Medoid Voting (Encore abstract)

