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Abstract. Automatic segmentation of the pancreas can help research in
pancreatic cancer and other pancreatic diseases. Quantitative measures
which are extracted from the pancreas based on CT imaging provide
valuable biomarkers for tracking the progression of various endocrine
and exocrine diseases. In recent years, deep learning has proven to be a
powerful tool for pancreas segmentation. However, deep learning models
in medical image analysis suffer from data scarcity: the lack of anno-
tated data poses a significant drawback in developing new models. One
possible solution is self-supervised learning which comprises of an unsu-
pervised pre-training stage followed by a subsequent supervised learning
stage. This paper presents a superpixel based approach to construct a
pre-training task for self-supervised learning for pancreas segmentation.
We corrupt the CT images segmented with superpixels by replacing ran-
dom segments with intensity values randomly sampled from the image.
The weights learnt when the model reconstructs the image are used to
initialize network weights in the subsequent segmentation task. We used
59 CT scans from the AbdomenCT-1k dataset for pre-training and 82 CT
scans from the NIH pancreas-CT dataset for the segmentation task. We
achieved an increase in performance with our approach compared to the
randomly initalized weights, as contextual image features are learnt via
this context restoration. Moreover, our approach outperforms existing
context restoration approaches using patch based methods.

Keywords: Context restoration · Self-supervised learning · Superpixels
· Pancreas Segmentation.

1 Introduction

Several methods for pancreas segmentation have been developed over the last
years. The segmentation of the pancreas is a difficult task due to large anatomi-
cal differences in terms of shape, size, and location [27]. Traditional approaches
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involve multi-atlas techniques, which extract statistical information regarding
size, orientation, or shape from training data. However, these techniques usu-
ally fail to cover all the anatomical variability and are highly dependent on the
selection of training images [7]. Therefore, these techniques have shown lim-
ited performance and generalization capability. Deep learning-based approaches
greatly increased performance in pancreas segmentation [27], in which CNNs are
at the core of these developments. Examples of well-known architectures used for
pancreas segmentation include fully convolutional neural networks (FCNs) [25],
U-net [12, 18, 31] and V-Net [6]. These supervised CNN architectures can either
be in 2D, 3D or hybrid structure.

Supervised models are all limited by the amount of annotated data that is
available. When annotated data is scarce, it is harder for a network to learn a
heterogeneous representation that encapsulates the variation in the data. This
is especially relevant for the pancreas due to its high anatomical variability. Self
supervised methods have been developed to tackle this.

Self-supervised learning (SSL) is a hybrid learning approach, comprising of
an unsupervised pre-training stage followed by supervised fine-tuning stage. The
unsupervised pre-training stage leverages supervisory signals from the data it-
self, which allows it to learn a representation that captures the underlying struc-
ture [21]. This representation is functional at a later stage, as the model has
learnt a set of features that are useful in the subsequent task [28]. The knowl-
edge is transferred by initializing a part of the network for the subsequent task
with the weights that are learned in the unsupervised pre-training task. This
way, unstructured medical data, such as unannotated CT scans, can be utilized.

This work investigates a context-restoration strategy for self-supervised learn-
ing with superpixels to improve pancreas segmentation. Most self-supervised
learning techniques that rely on reconstruction of distorted images use unin-
formed and random regions to corrupt an image [10]. For example, in the context-
restoration method as described in [3], images are distorted by swapping sub-
patches of an image. However, the boundaries of the patches do not adhere to
the boundaries of the organs in the image. Consequently, the network can use
information from the organ itself to reconstruct the distorted areas. It is hypoth-
esized that the network does not have to rely on global contextual information,
such as the presence and relative position of other anatomical structures to re-
build the image. As a result, the network is not forced to learn a representation
that encapsulates global spatial relationships. However, learning this information
can be especially relevant for the pancreas, since the position, shape and size of
the pancreas are strongly affected by its surrounding organs, such as the liver,
stomach and kidneys [16]. Likewise, it has been found that learning contextual
information in CT scans improves performance in deep learning networks [18,
23].

Superpixels are a subgroup of pixels in an image that share common char-
acteristics, such as their location and pixel intensities. Superpixels segment an
image into subsegments by considering similarity measures. The central principle
is that the areas of the segmented superpixels adhere well to organ boundaries
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within a CT scan, which is utilized to segment parts of the image automatically.
In our superpixel-based SSL strategy for pancreas segmentation, superpixels are
created from CT scans from the AbdomenCT-1k dataset [14]. Several super-
pixel segments are randomly selected and distorted. Afterward, a neural network
is trained to reconstruct the image. As superpixel segments correlate with the
object boundaries in an image, areas that contain large parts of an organ, or
even the entire organ are distorted. Therefore, the network is forced to use the
presence and position of other organs to recreate the image. The weights learnt
when the model reconstructs the image are used to initialize network weights
in the downstream segmentation task. We used a separate dataset, the NIH
pancreas-CT dataset [20] to evaluate our segmentation task. We show our ap-
proach outperformed randomly initialized weights and a patch-based context
restoration approach to SSL [3].

2 Related Work on Self-Supervised Learning

The usage of SSL approaches in the medical domain has received relatively little
attention [2]. As a result, several developed frameworks have not been extensively
tested in the medical domain. In general, self-supervised learning approaches can
be divided into three categories: contrast-based, context-based, and generative
self-supervised learning strategies.

Contrast-based Self-Supervised Learning The core idea of contrastive
learning is that similar objects should have similar representations. Recent de-
velopments in contrastive learning show promising results. For example, [2] pro-
posed multi-instance-constrastive learning, in which data augmentation methods
such as cropping or Gaussian blur were used to create different views of the same
image.

Moreover, if multiple images of the same object are available (such as a CT
scan and a follow-up scan), the distinct images were used to create positive pairs
of examples. Afterward, an encoder network was used to learn valuable represen-
tations. The network was optimized using contrastive loss, aiming to minimize
the difference between positive examples and maximize the difference between
negative examples. For each positive pair, negative examples were obtained by
considering all other augmented examples within a minibatch as negative pairs,
following the training protocol of [4]. It has been found that this technique yields
significant performance improvements, which outperforms other approaches such
as supervised transfer learning from images of the natural image domain, e.g.
from images such as real-world scenes (ibid.). Moreover, the self-supervised mod-
els generalize better and are more label-efficient. As a result, the downstream
model achieves state-of-the-art performance in a dermatology condition classi-
fication task. However, these methods are severely affected by the selection of
negative examples, which is not optimal and can result in varying performance
depending on the task [24]. Other approaches exist within self-supervision frame-
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works, such as context-based learning and generative learning, which do not
require the construction of negative examples.

Generative Self-Supervised Learning Generative approaches are aimed at
reconstructing distorted images volumes. For example, [17] proposed a method
in which a CNN was learned to inpaint removed sub-patches in an image. The
authors proposed that by inpainting the image, the model had to learn the
semantic context of an image to reconstruct it. However, this approach yield
limited performance in medical imaging. One of the reasons for this is that
removing an image patch alters the intensity distribution of an image. As a
result, the resulting- and original images belong to a different domain, which
yields limited performance [3].

Context-based Self-Supervised Learning The primary goal of context-
based SSL tasks is to learn contextual semantics. Examples include patch relative
position prediction, angle prediction, or jigsaw puzzles, which have been found
to increase performance in the subsequent task. For example, [15] proposed a
jigsaw puzzle task in which a CNN was trained to classify nine sub-patches of
an image in the correct sequence. The method proved successful in pre-training
for the subsequent task but also had drawbacks. For example, since the number
of possible combinations of a sequence of 9 items is high (362880), the method
was challenging in terms of model complexity and memory.

In order to tackle this, less computationally expensive tasks have been devel-
oped. One example is rotation prediction, in which the pre-training task consisted
of predicting the angle in rotation. Although the model showed performance im-
provements on limited data and converged faster, the performance improvements
on the whole dataset were limited [8]. Other approaches to self-supervised learn-
ing include predicting the position in a 3 × 3 grid between a central patch and
its surrounding patches [5]. However, it has been found that the performance
gains are limited since the network could complete the task using relatively triv-
ial features [3]. This emphasizes the complexity of designing a good pre-training
task: it should have a good balance between simplicity and complexity. More-
over, the pre-training task must lie in the same domain as the fine-tuned task to
learn semantically relevant features. As a result, designing a pre-training task is
difficult.

A region-of-interest guided supervoxel inpainting task was proposed by [10].
In this task, supervoxels were used to mask regions in an image. Supervoxels best
can be described as superpixels in 3D space, in which similar voxels are grouped
based using similarity measures. Thus, the described approach is similar to the
approach in the this paper. The selection of supervoxels to be masked, is guided
by a region-of-interest (ROI). This entails that the task uses the annotated
segmentation maps to select relevant areas to be masked. Thus, only regions
that (partly) contain tumour tissue are masked. The results of this approach
are promising. The ROI-supervoxel task outperformed the baseline to a great
extent in the downstream task. However, one of the significant drawbacks of this
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approach is that the method uses the ROI to select relevant supervoxels. This
counters one of the core ideas of self-supervised learning: learning from unlabelled
data. Therefore, it is less relevant in the medical domain since annotated data is
sparse. However, it also should be noted that even without using the ROI to select
areas, the approach yielded significant performance improvements compared to
the baseline. However, the potential of these methods for pancreas segmentation
is unclear. Therefore, the current research investigates this further and take the
limitations of current research into account.

3 Dataset and Data Preparation

In the current study, the NIH pancreas-CT dataset [20] is used to train and
evaluate a network that can segment the pancreas. The dataset contains 82
abdominal, contrast-enhanced 3D CT scans. All scans are manually segmented
by a medical student and verified by an experienced radiologist. The resolution
of the CT scans is 512 × 512 × N , where N lies between [181, 466]. Moreover,
the slice thickness T varies per scan where T lies between [1.5, 2.5]. Since it
has been found that augmenting the data during the pre-training phase in SSL
tasks leads to better performance in the subsequent task, another dataset is used
during pre-training. This dataset consists of 50 abdominal CT scans from the
AbdomenCT-1k dataset [14]. The resolution of the CT scans is 512× 512×N ,
where N lies between [71, 113]. The slice thickness varies between [0.65, 5] cm.
The AbdomenCT dataset will not be used during the subsequent task of training
a model for pancreas segmentation. Therefore, it is only used in the pre-training
SSL task. Both datasets are publicly available.

Pre-processing of the data consists of several steps. First, each image is
clipped between [−100, 240] HU (Housfield Units), following the protocol in [26,
12]. Afterward, each scan is normalized within [0, 1] by using MinMax scaling. Fi-
nally, all images are cropped to the dimensions [300, 300], to decrease the amount
of abundant information. Afterward, the images are blurred using a Gaussian
blur with a standard deviation of 0.5 to counter anti-aliasing effects. Finally,
they are resized to [208, 224].

4 Methods

Our self-supervised learning framework comprises of a pre-training task with a
deep learning model (a 2D U-Net) for superpixel context restoration. The weights
are transferred to another U-Net to perform segmentation. The pre-training task
is designed to yield a set of layer weights that encapsulate useful information for
the final task of segmentation. A subset of the weights is then used to initialize
the weights of the downstream segmentation model. Figure 1 shows an overview
of our framework.
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Fig. 1. Overview of the experimental set-up. The same U-Net architecture is applied
in the pre-training and fine-tuning task. The pretraining task is trained to reconstruct
a distorted image. The weights (from pretraining) are transferred to the fine-tuning,
segmentation task. The output layer of the pretraining stage is a ReLu function whereas
for a fine-tuning task, we use a sigmoid function.

4.1 Superpixel based context restoration

Superpixels are a connected regions of pixels in an image which share common
characteristics such as pixel intensities or texture. The areas of the superpixel
segments do not overlap and adhere well to object boundaries within the CT
scans which can be utilized to segment parts of the image automatically. We
leverage this characteristic to create a self-supervised learning task.

In the superpixel-based context-restoration method, a 2D U-Net is learned
to approximate the function g(xd), where xd is the distorted superpixel im-
age, and g(xd) yields the original image xo. This task is constructed as follows:
first, each slice is segmented into N segments by using the SLIC algorithm (see
Appendix A). After the image has been segmented, K segments are randomly
chosen, and the intensity values are replaced with intensity values that are ran-
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domly sampled from the image. The variable, K, is calculated by using the ratio
parameter R. To elaborate, R can be seen as a ratio of N , the total amount of
superpixel segments such that K = R ·N . Pixels values are randomly sampled
from the original image to perserve the intensity distribution. This is important
for the network to learn features belonging to a specific domain [3].

Algorithm 1 Image distortion from Superpixel Segmentation
Require: Image xo

1: Transform image xo into N superpixel segments. We denote the output as
Sϵ[S1, S2...SN ], where Si is a superpixel segment.

2: Randomly sample K superpixel segments into S′, which yields S′ϵ[S1, S2 . . . SK ].
3: Save the indices [xi, yi] of all pixel values from the superpixels in S′ into I.
4: Replace all values at indicies I with pixels randomly sampled from xo, which gives

distorted image xd.
5: Return distorted image xd.

4.2 U-Net Architecture

The model for both the pre-training tasks and pancreas segmentation is a 2D
U-Net [19], which is used extensively in medical image segmentation tasks. The
U-Net architecture is based upon the fully convolutional network [13], and fol-
lows an encoder-decoder-like structure, in which a contracting part consisting
of various convolutional layers is followed by an expanding part that consists of
various up-sampling layers. Hence the expanding layers increase the resolution of
the output back to its original shape. Unlike other encoder-decoder architectures,
the contracting and expanding parts of the U-Net are not fully decoupled, due
to skip connections. Feature maps of the convolutional layers in the contracting
part are concatenated with outputs of subsequent layers in the expanding part,
which are used as input for each up-sampling layer. This allows the network to
recover spatial information that is lost during down-sampling operations in the
contrasting part of the network [19].

The CT scan is grayscale. Hence, the input map is of size 208 × 224 × 1,
which is followed by four encoder blocks. Each encoder block consists of two
convolutional layers with a ReLu activation function and a kernel size of 3x3.
Both layers are followed by a max-pooling operation with a kernel size of 2× 2.
Batch Normalization is applied after each convolutional layer to make the net-
work train faster and more stable [9]. The number of convolutional layers in
each block increases by a factor of two: the convolutional layers in the first block
have 64 filters, the layers in the second block have 128 filters, the layers in the
third block have 256 filters, and the layers in the fourth block have 512 filters.
Afterward, the resulting feature maps are expanded by transposed convolutional
layers. The expansive part of the network consists of 4 blocks that consist of one
up-sampling layer, followed by two convolutional layers with ReLu activation
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function and a kernel size of 3x3. The output is passed to a concatenation layer,
where the output of the subsequent layers and the corresponding output of the
feature maps in the contracting path is concatenated. The amount of filters is
divided by two in each block. During this process, the down-sampled represen-
tation from the contrasting part is up-sampled back to the size of the original
input. An overview of the architecture in shown in figure 2.

Fig. 2. Overview of the used U-Net architecture, figure adapted from [19]

The loss during the segmentation task is the Dice Loss, which is LDice =
1−DSC. Here, the Dice score coefficient (DSC) measures the overlap between
the prediction and ground truth, which is given as:

DSC =
2TP

2TP + FP + TN
(1)

The true positive (TP) indicates the number of foreground pixels (e.g., the
pancreas mask) correctly classified as pancreas by the model. The false positives
(FP) are the background pixels incorrectly classified as foreground pixels. True
negatives (TN) indicate the number of the background pixels correctly classified
as background pixels by the model. Likewise, false negatives (FN) indicate the
number of foreground pixels incorrectly classified as background pixels by the
model.

One of the main advantages of using Dice Loss over other loss functions in
semantic segmentation is that it can handle imbalanced data [22]. Therefore, this
is especially relevant for pancreas segmentation since the pancreas only makes
up a small part of each CT scan [11]. Only slices that contain 50 or more pixels
of the pancreas are used for training, while testing is done on all data, which
helps to limit the impact of background pixels during training [31].
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4.3 Loss functions Pretraining

In this research, the effect of two loss functions for the pre-training stage are
compared: L2 Loss and SSIM loss, in order to investigate the choice of loss
function on the final performance.

L2 Loss The loss is minimized by using the L2 loss (least squares Error) func-
tion. The L2 loss is a relatively simple loss function, as it is the sum of all the
squared differences between the true and predicted values. It is calculated as
L2loss(x, y) =

∑N
i=1(xi − yi)

2.
Although L2 loss has shown powerful results, it is also known that L2 loss

is not optimal for image restoration as it leads to blurred images and does not
correspond well to image quality as perceived by a human observer [29]. One of
the main drawbacks of L2 loss is that it assumes that pixels are independent of
each other, while in reality, this is not the case: the value for a pixel depends on
the values of the pixels that surround it. However, other loss functions exist which
do not make this assumption. For example, the structural similarity (SSIM) index
provides a measure of similarity by comparing two images based on luminance,
structural- and contrast similarity [30], which resembles how a human would
evaluate the similarity between two images.

SSIM Loss The loss function consists of three core parts: luminance, contrast,
and structure. Luminance reflects the averaged intensity values over all pixels
in an image (µx). In order to calculate the similarity in luminance between two
images (x, y) the following equation is used, where C1 is a constant.

L(x, y) =
2µxµy + C1

2µ2
xµ

2
y + C1

(2)

The second part reflects the similarity in variation in luminance, which is defined
as contrast (σx). The similarity in contrast between the two images is calculated
as follows

C(x, y) =
2σxσy + C2

2σ2
xσ

2
y + C2

(3)

The third part, structure is defined as the Pearson correlation of the luminance
of two images. It is calculated as follows:

S(x, y) =
σxy + C3

σ2
xσ

2
y + C3

(4)

SSIM is defined by multiplying the three individual functions with each other,
together with a corresponding weighting factor (α, β and γ)

SSIM(x, y) = αL(x, y) · βC(x, y) · γS(x, y) (5)
Following from this, SSIM loss can be calculated as follows:

LSSIM (x, y) = 1− SSIM(x, y) (6)
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4.4 Implementation Details

In the pre-training stage, all experiments are conducted by training a network
for 10 epochs with a learning rate of 0.0001 and a batch-size of 4.

In the fine-tuning stage, all experiments are conducted by training the net-
work for 10 epochs, which is common when training with lower batch sizes [7].
Moreover, the networks are trained with a learning rate of 0.0001 and a batch-
size of 4. In order to get a more robust estimate of performance, all experiments
were carried out using four-fold cross-validation. Three folds of patients are used
as training data set for each fold, and the remaining fold for testing. This process
is repeated until all folds have been used for training- and testing. All code is
written in Python 3.8. The used libraries are Numpy, OpenCV2 and skimage
for data processing. Besides, the Tensorflow framework is used to construct all
machine learning models. Moreover, a Google Colab Pro+ instance is used to
train all models, which consists of 54 GB of RAM and a Nvidia P100 GPU.

5 Results

Fig. 3. Example of the restored images using superpixel-based pre-training.

Superpixels in our approach are generated by using the SLIC (Simple Lin-
ear Iterative Clustering) algorithm. The SLIC is initialized with 100 segments
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and a compactness of 0.05, which is the trade-off for color-similarity and prox-
imity.Figure 3 shows a qualitative overview of the results of superpixel-based
context restoration. As one can see, both models, pre-trained with L2 and SSIM
loss, yield good results. The structure of images is similar to the original im-
age. Figure 4 shows a qualitative overview in which the predictions of both loss
functions for superpixel-based pre-training for patient 70 are compared.

Fig. 4. Example of the predicted masks of each model using superpixel-based pretrain-
ing The ground truth is shown in red in all the images. The second, third and fourth
column of figures show the U-Net segmentation solution with randomly initialized
weights (yellow) and with weights transferred from our superpixel context restoration
approach with L2 loss (green) and SSIM loss (blue) functions.

We provide quantitative results, comparing our approach with a U-Net pre-
trained with weights from [3] and the baseline of randomly initialized weights.
Given these results, it is clear that pre-training with superpixels yields the best
performance. Moreover, pretraining with superpixels seems to result in more ro-
bust models, since the standard deviation is lower for both the Dice and Jaccard
scores.

Model Loss Dice Std. Min. Max. Jaccard Std. Min. Max.
PB U-Net L2 74.49 11.51 71.89. 77.55 60.50 12.68 58.22 64.09
PB U-Net SSIM 75.03 10.55 70.99. 78.79 61.06 12.16 59.95 62.55
SP U-Net* L2 76.00 10.36 74.26. 78.34 62.27 11.89 60.22 64.89
SP U-Net SSIM 75.40 10.23 70.99. 78.79 61.47 11.75 56.74 65.50
Standard U-Net - 74.44 11.89 71.06 77.40 60.59 13.25 57.4 63.59

Table 1. Comparison of all three pre-training methods with different loss functions.
PB refers to Patch Based pre-training by [3] and SP refers to our superpixels pre-
training approach. As we used a four-fold cross validation, we provide the average,
standard deviation, minimum and maximum Dice score and Jaccard index across the
folds. Highest scores are shown in bold for each column are shown in bold. Results
show that our Superpixel pretraining approach with the L2 loss function (marked with
a *) outperformed the other methods.
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This can also be seen when performing a qualitative assessment of the results:
superpixel-based pre-training significantly outperforms other methods when the
data is irregular, such as being slightly rotated. For example, clear differences
can be seen in terms of performance for patient 80 (Figure 5). It is clear that the
the irregular and disconnected shapes of the pancreas are detected much better
in comparison to other models.

Fig. 5. The ground truth is shown in red in all the images. The second, third and
fourth coloum of figures show the U-Net segmentation solution with randomly ini-
tialized weights (yellow), weights transfered from pretraining with superpixels context
restoration (green) and weights transfered from the patch based context restoration
(blue). Results show that the superpixels based approach has a higher overlap with the
ground truth mask.
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6 Discussion

The current research is the first to investigate the effect of superpixel-based con-
text restoration in the context of pancreas segmentation. The results indicate
that pre-training a model using superpixel-based context restoration with L2
yields the best results. It is found that pre-training the model results in per-
formance gains of up to 1.5 %. Besides, the standard deviation is also lower,
which indicates that the model is more robust. Thus, the results suggest that
superpixel-based pre-training tasks are promising for pancreas segmentation and
self-supervised learning in general, which extends the findings of other litera-
ture [10].

Future work includes comparing our approach to other SSL paradigms, such
as methods from contrast- and context-based SSL. The effect of different hy-
perparameters should be further investigated as well. Another interesting topic
which builds further upon this, would be to investigate the effects of increasing
the size of the dataset during pre-training. To elaborate, currently only 50 ex-
tra scans are used during pre-training. However, other studies use substantially
more data during pre-training [2]. It is definitely possible that this yields a more
heterogeneous representation which is useful for the subsequent task. Finally, it
is worthwhile to investigate how the superpixel-based context restoration can be
used together with coarse-to-fine methods, as described in [31, 12]. For example,
first a network can be used to extract a coarse segmentation of the pancreas,
which is used in a subsequent superpixel-based pre-training task following the
current approach. Afterward, the weights can be shared with a second segmen-
tation network to improve the segmentation performance during fine-grained
pancreas segmentation.

7 Conclusion

In summary, the current work explored the usage of superpixels to construct a
pre-training task for self-supervised learning. During the task, superpixels are
used to distort areas of an image, which the network has to reconstruct during
the pre-training task. It has been found that superpixel-based context restoration
adds a significant increase in performance compared to the baseline. Moreover,
it outperforms existing methods. The results indicate that superpixels can be
promising in the development of pre-training tasks.
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Appendix

Superpixel segemntation

In the current study, superpixels are generated by using the SLIC (Simple Lin-
ear Iterative Clustering) algorithm [1]. This algorithm generates superpixels by
clustering pixels based on color similarity and closeness in the image plane. Since
the CT images are grayscale, clustering is performed in three-dimensional [ixy]
space, i is the intensity and [xy ] is the pixel position. The algorithm works
through several steps explained in more detail below.

1. Denoting N as the number of pixels in the input image and K as the number
of desired superpixel clusters, the first step consists of initializing K cluster
centers at regular grid intervals S. Here S =

√
(N/K). Each pixel is repre-

sented by [In, Xn, Yn]. After the cluster centers are created, they are moved
to a seed location corresponding to the lowest gradient position in a 3 × 3
neighborhood to avoid placing them at an edge.

2. Next, each pixel is assigned to the nearest cluster within the search area. A
new center is computed by taking the mean of all [ixy ] vectors. This process
is repeated until convergence. The algorithm converges when the residual
error E is below a certain threshold.

3. After this process has been finished, connectivity is enforced by connecting
disjoint pixels.


