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An important issue in machine learning is the choice of formalism to represent
the functions to be learned [9,10]. For example, feedforward neural networks with
hidden layers are a popular formalism for representing functions from Rn to Rp.
When considering functions over graphs, graph neural networks (GNNs) have
come to the fore [8]. GNNs come in many variants; in this paper, specifically, we
will work with the variant known as message-passing neural networks (MPNNs)
[3].

MPNNs compute numerical values on the nodes of an input graph, where,
initially, the nodes already store vectors of numerical values, known as features.
Such an assignment of features to nodes may be referred to as a feature map on
the graph [5]. We can thus view an MPNN as representing a function that maps
a graph, together with a feature map, to a new feature map on that graph. We
refer to such functions as global feature map transformers (GFMTs).

Of course, MPNNs are not intended to be directly specified by human design-
ers, but rather to be learned automatically from input–output examples. Still,
MPNNs do form a language for GFMTs. Thus the question naturally arises:
what is the expressive power of this language?

We believe GFMTs provide a suitable basis for investigating this question
rigorously. The G for ‘global’ here is borrowed from the terminology of global
function introduced by Gurevich [6,7]. Gurevich was interested in defining func-
tions in structures (over some fixed vocabulary) uniformly, over all input struc-
tures. Likewise, here we are interested in expressing GFMTs uniformly over all
input graphs. We also consider infinite subclasses of all graphs, notably, the class
of all graphs with a fixed bound on the degree.

As a concrete handle on our question about the expressive power of MPNNs,
in this paper we define the language MPLang. This language serves as a yardstick
for expressing GFMTs, in analogy to the way Codd’s relational algebra serves as
a yardstick for relational database queries [1]. Expressions in MPLang can define
features built arbitrarily from the input features using three basic operations also
found in MPNNs:

1. Summing a feature over all neighbors in the graph, which provides the
message-passing aspect;
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2. Applying an activation function, which can be an arbitrary continuous func-
tion;

3. Performing arbitrary affine transformations (built using constants, addition,
and scalar multiplication).

The difference between MPLang-expressions and MPNNs is that the latter must
apply the above three operations in a rigid order, whereas the operations can
be combined arbitrarily in MPLang. In particular, every MPNN is readily ex-
pressible in MPLang. If the converse also holds, which we will investigate, then
MPLang would serve as a benchmark for GFMTs that can be expressed by
combining the operations of an MPNN in a free manner.

Our research question can thus be made concrete: is, conversely, every GFMT
expressible in MPLang also expressible by an MPNN? We offer the following
answers.

1. Considering the case of the popular activation function ReLU [4,2]. In this
case, we show that for every MPLang expression there exists an equivalent
MPNN and show to generate such an MPNN.

2. When arbitrary activation functions are allowed, we show that the above still
holds when restricting the input to any class of graphs of bounded degree,
equipped with features taken from a bounded domain. We also again show
how to generate these MPNNs.

3. Finally, when the MPNN is required to use only the ReLU activation function
except of in the last layer, we show that every MPLang expression can still
be approximated by such an MPNN. For this result we again restrict to
graphs of bounded degree, and moreover to features taken from a bounded
domain. Here the conversion from MPLang to MPNN invokes the classical
universality of feedforward neural networks.
Additionally, we show that if at least one of these restrictions does not hold,
that such an approximation does not exist.

For our proofs we require the construction of complex MPLang expressions
and complex MPNNs. To aid in their construction, we define several operations
on GFMTs. We then prove that as long as MPNNs are closed under these op-
erations and the translation of the building blocks of MPLang can be expressed
as MPNNs, then any MPLang expression can be converted into an MPNN. As
a result of this modular approach, if we wish to prove any formalism expressing
GFMTs can be converted into another formalism expressing a GFMT, we simply
need to prove these conditions hold for these two formalisms.
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