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Abstract. Model-Agnostic Meta-Learning is a meta-learning method
that achieved state-of-the-art performance on few-shot image classification
benchmarks at the time of its introduction. MAML’s strength is its ability
to quickly adapt to a new task in time-critical settings, while still being
general enough for any gradient-based model. Although there is no need
for quick adaptation in most of the few-shot learning benchmarks, often
MAML is utilized as a benchmark in this context. We investigate the
benefit of limiting the adaptation steps of MAML in settings where
quick adaptation is not required by the problem. In this initial study,
the expected performance of MAML is compared to some conventional
base learners for synthetic linear and nonlinear regression problems. Our
experimental results show that limited gradient descent steps only improve
generalization performance when faced with small task variance.
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1 Introduction

Learning to learn, also referred to as meta-learning, treats the training of a
machine learning model as a learning problem in itself. In this setting, there exist
multiple learning problems and they are treated together. A machine learning
model is "learning to learn" if the performance on each task improves with
training experience obtained from the other tasks [18]. A major use of meta-
learning is to tackle few-shot learning problems, where there is little data available
from the learning task that is of prime interest, whereas there is an abundance
of data from other, yet similar tasks.

Early works on the learning-to-learn paradigm relied upon two different models
working together, where one model tries to improve performance on the specific
task and the other tries to improve performance over the observed tasks together
[18]. MAML (Model-Agnostic Meta-Learning) [6] provides an algorithm that
circumvents the need for multiple models. This method tackles meta-learning by
providing a model initialization (which is always required for models that are
optimized with Stochastic Gradient Descent) that facilitates quick adaptation
and good generalization.

Since it is model and problem independent, MAML finds a wide application
area in the context of few-shot meta-learning. Specifically, for supervised and
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reinforcement learning problems under that paradigm. Moreover, MAML also
aims to improve a specific task performance quickly (with a few gradient steps).
This is an additional important aspect of meta-learning.

The quick adaptation feature can prove useful in certain settings, for instance,
in robotics applications, where the reaction/adaptation time of the agents in
dynamic environments imposes time limitations. However, this limitation is not
present in supervised learning problems, where MAML or its variants are utilized
as a baseline (e.g. [8,15,17,3,10]). Most supervised problems are benchmarked
with an image classification problem, where N -way K-shot classification problem
(N different classes with K labeled training data) is tackled, where memory or
time limitations do not constitute a major issue.

The main aim of this paper is to investigate MAML in settings where quick
adaptation is not needed, and where most of the applications and variants
of this method are benchmarked. This will be achieved by looking at the ex-
pected performance of MAML under two synthetic regression scenarios, and
comparing its performance to conventional base learners (e.g. Linear Regres-
sion, Ridge Regression, Kernel Ridge Regression, etc.). By doing this we aim
to investigate the effect of the limited adaptation step, and whether or not
there is a benefit to this limitation. The code for all experiments is available at
github.com/taylanot/EE_MAML.git.

2 Model-Agnostic Meta-Learning (MAML)

MAML aims to obtain an intermediate modelM(w̄meta) that can generalize well
after adaptation with gradient descent to a dataset Z observed from a new and
unseen task T drawn from pT where the number of training points N and the
number of iterations niter is limited.

In order to obtain w̄meta first, a batch of tasks {Ti}Mi=1 from pT is observed
with each having a corresponding dataset {Zi}Mi=1. Then, the future gradients
concerning each task are observed and gradient descent is utilized to get possible
parameters w̄′ for each task and a gradient descent iteration is made by collecting
all the possible parameters from an observed batch of tasks for the real parameter
update. The general procedure for supervised learning problems is given in
Algorithm 1. Authors of [6] indicate that by using this procedure the model
M(w̄meta) requires few gradient updates from a specific task, achieving good
generalization performance. Examples of the intermediate model M(w̄meta)
prediction with the observed tasks on the background can be seen in Figures 1a
and 1b.

3 Related Work

MAML received multiple developments that followed the same approach of finding
a warm initialization for all the tasks coming from a certain task distribution.
Subsequent works highlight some of its limitations. Authors in [8,3] improved on

https://github.com/taylanot/EE_MAML.git
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Data: pT , α, β
Result: Intermediate ModelM(w̄meta)
initialize w̄ randomly;
while not done do

sample a batch of tasks Ti from pT
forall Ti do

Obtain future gradients: ∇w̄LTi(M(w̄)) wrt. Zi

Possible future parameters: w̄′
i = w̄i − α∇w̄LTi(M(w̄))

end
Update: w̄← w̄ − β∇w̄

∑LTi(M(w̄′
i))

end
Algorithm 1: MAML[6] Algorithm

MAML’s need for task similarity making the meta-learning more task family ro-
bust. The sensitivity of MAML to architectural details is noted and circumvented
in [1]. The need for a second order term in MAML is questioned and shown that
first order approximations can give equally good results in [15]. Deeper changes to
the MAML method are presented in [9] to convert it to a method of probabilistic
inference. Moreover, a continual learning extension where tasks are introduced
sequentially is proposed in [7,17].

Besides most of the above-mentioned developments, some of the attention
went to improving the quick adaptation stage from the learned initialization. In
[12] not just the initialization, but also the update direction and the learning rate
are optimized. Moreover, in [2] the learning rate for the adaptation is learned
with hypergradient descent. Both methods aim to limit the adaptation steps
needed.

Therefore, MAML’s developments also focus on quick adaptation. However,
the above-mentioned articles use the Omniglot dataset [11] as a supervised
classification benchmark with MAML as the baseline and some of the works
recreate the sinusoidal regression task as shown in the original MAML paper [6].
Both of these settings where MAML and its variants are tested do not have the
time or memory restrictions as few-shot learning problems. Yet, quick adaptation
methods are still being benchmarked with these datasets.

4 Experimental Setting

Throughout this work uppercase bold letters (e.g. X), lowercase bold letters
(e.g. x), and lowercase letters (e.g. x) are used for matrices, vectors, and scalars
respectively. Moreover, the vectors are assumed to be stored in columns. Finally,
the ID represents a D × D identity matrix, the 1D and 0D represents D × 1
vector of ones and zeros respectively.

4.1 Learning Problems

In this work, two families of regression tasks are considered; a linear and a
nonlinear regression task family.
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Consider the conventional linear regression problem

y = xTa + ε, (1)

where y ∈ R, x ∈ RD, a ∈ RD and ε ∼ N (0, σ2). Each realization of the slope a
corresponds to a task T .

For the nonlinear problem family, the regression function is defined as a
weighted combination of sinusoidal functions:

y = sin(x + φ)Ta + ε, (2)

where y ∈ R, x ∈ RD, a ∈ RD and ε ∼ N (0, σ2). Assuming that each realization
of scale term a and φ corresponds to a task observed in the environment T .

For both learning problems each set of observed N input (x) and its corre-
sponding label (y) is denoted by a dataset Z := {(xi, yi)}Ni=1.

A model parameterized by w̄ is denoted by M(x, w̄) : x → y. A model
M(x, w̄) that is trained with Z obtained from task T is denoted by M̂(x).
Noting that M̂(x) for a base learner is only exposed to a single task T and a
single dataset Z, whereas a meta learner, in this case, MAML, are exposed to
multiple tasks from pT and multiple datasets Z in the meta-learning stage and
then the adaptation is done as in the case of a base learner with just a single
task T and a single dataset Z. The discrepancy between the prediction of the
estimator M̂ and y is measured in terms of squared loss L := (M̂(x) − y)2.
Ultimately the loss that this paper investigates is the Expected Squared Loss of
an estimator M̂ over the pT ;

E :=

∫∫∫
(M̂(x)− y)2p(x, y)pZpT dxdydZdT . (3)

This performance measure gives rise to the Bayes Error to be given by σ2

that is coming from the noise term, which represents a model that is the perfect
estimator, referred to as oracle in some of the meta-learning literature.

For all the problems the input distribution is given by px ∼ N (0, kI) where
k is a parameter for the variance of the inputs. For the linear problem the
pT := p(a) ∼ N (m1D, cID) and for nonlinear problem the task distribution
takes the form of a joint distribution pT := p(a,φ) where pa ∼ N (1D, c1ID) and
pφ ∼ N (0D, c2ID)

4.2 Models

For the linear problems M(x, w̄) := x̄w̄ with x̄ ∈ R1×D+1 and w̄ ∈ RD+1×1

where w̄ := [w, b]T and x̄ := [x, 1] is utilized. The optimum parameters ( ˆ̄w) for
different linear models are obtained as follows:

Linear Estimator is given by the least-squares solution, ˆ̄w := (XTX)−1XTy,
where X ∈ RN×D is the design matrix where the observed input data is stored
in rows.
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Fig. 1: 100 sample tasks drawn from pT for both linear (m = 0 and c = 1) and
nonlinear (c1 = 1 and c2 = 1) problems with low opacity and the intermediate
models for MAML trained with respective pT .

Ridge Estimator is given by ˆ̄w := (XTX + λID)−1XTy which is obtained by
minimizing the squared loss with the additional term of λ||w̄||22.

Kernel Ridge Estimator is given by ˆ̄w = XTα where α := (K + λIN )−1y where
K ∈ RN×N is the Gram Matrix obtained by replacing XTX inner product
by a kernel κ(X,X). Then, the prediction of the estimator takes the form
M̂(x∗, w̄) = αTκ(x∗,X) where x∗ ∈ RD×1.

For both linear and nonlinear models, gradient descent can be utilized to
update the parameters of a modelM. Then,

Gradient Descent for any given modelM(x, w̄) and a given number of iterations
niter the gradient descent estimator is given by {w̄j+1 = w̄j−η∇w̄j

∑N
i (M(xi, w̄j)−

yi)
2}niter

j=0 . In other words for any given value of w̄ one gradient update is given
by the gradient with respect to w̄ with a scaling parameter η.

All the models investigated can be divided into two sub-categories the models
that have information regarding the task space and the ones that have not. The
labels used in Section 5 of the models that have information regarding the task
space are as follows:

– MAML (for linear problem): corresponds to gradient descent with niter with
the adjustable parameters obtained from the mean of the tasks E[pT ] with
small perturbation δ ∼ N (0, 0.1I) since the MAML procedure for a linear
model goes to the mean of the task distribution.

– MAML (for nonlinear problem): an intermediate model trained with the
network and meta-learning procedure given in [6] for the sinusoidal regression
problem. After which gradient descent with niter is used for adaptation to a
certain task.
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Finally, the following model labels have information from a single task:

– Linear: standard least squares solution.
– Ridge: standard least squares solution with L2 − regularization.
– random GD: gradient descent with niter with the adjustable parameters

starting from random initialization.
– Kernel Ridge: kernelized (with Radial Basis Function Kernel)

For the linear problem setting, it should be noted that the optimum can
always be reached when the gradient descent is utilized with an infinitely small
learning rate and an infinite number of gradient steps. Thus, allowing us to
investigate the difference between taking limited steps or allowing the model to
go towards the optimum directly.

It should be noted that the hyper-parameters of the utilized models if there
are any, are selected with a simple grid search with 20 different values, and
only the one with the lowest mean expected error over the parameter under
investigation are presented in the results.

5 Results and Discussion

This section is dedicated to the expected performance results of a meta-learning
model after adaptation and conventional base learners (e.g. Linear, Ridge, and
Kernel Ridge Regression models), to see their performance differences under
certain scenarios induced by the experimental assumptions (e.g. task variance,
input variance, noise, and dimensionality).

Linear Problem The linear problem introduced in Section 4 is characterized
by the dimensionality D, number of training samples N , number of gradient
steps niter, the task variance c and task mean m, and the variance of the input
samples k. For the sake of brevity, only some of the parameters are discussed in
this section. Unless the parameter in the configuration is under investigation, the
default values are utilized. And, the default values for the experimentation σ = 1,
m = 0, k = 1, c = 1, niter = 1. Moreover, the number of tasks drawn (NT ), and
dataset draws (NZ) for approximating the expected error given in Equation 3
are taken to be 100 each. Finally, the test set size is taken as 1000.

Effect of Number of Gradient Steps niter: It can be observed from Figure 2a that
for a low number of training samples the gradient steps taken have little to no
influence. But as the number of training samples increases for a given problem
dimensionality the effect niter on the expected error gets much more prominent.
It is evident that MAML decreases the number of gradient steps needed for
convergence. Moreover, for D = N case it even improves generalization after
convergence too (see Figures 2d and 2a). Overall, it can be observed that the
increasing niter converges towards the Ridge model variants with the exception
of the D = 1 and N = 1 cases.
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Fig. 2: The expected error for the increasing number of gradient steps niter
used for adaptation when changing the number of training samples for various
problems of different dimensions.

Effect of the Number of Training Samples N : Results of this experiment can
be found in Figure 3 for increasing problem dimensionality. It can be seen that
the Linear model suffers from singularities. For instance, in Figure 3b when
the number of samples equals dimensionality N = D. However, it is able to
have comparable error over all the selected problem dimensionalities. For the
increasing training samples case, the Ridge model performs much better as all the
cases converge towards the Bayes error. However, MAML is unable to converge
towards the Bayes error. This can be attributed to the regularizing effect of the
limited gradient steps (niter) allowed for the models. Overall, the improvement
that the additional task-related information brings to the gradient-based models
is not visible, as the random GD model is orders of magnitude higher in expected
error. It is evident that although task information provides gain over random
initialization, the expected performance is hindered for the gradient-based models.

Effect of Task Variance c: The results of increasing task variance for various
problem dimensions and various numbers of training samples can be found in
Figure 4. The most obvious observation is that for all the models that utilize
gradient descent, expected error increases, whereas the Linear model and the
Ridge model are only affected by this phenomenon for problem dimensionality
D ≥ N .

In light of this observation, another important result is that for N ≥ D
and for small task variance the gradient descent variants (except the randomly
initialized model) have lower expected error than the Ridge model. However,
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Fig. 3: The expected error for the increasing number of training samples and
problem dimensionality.

this performance diminishes with increasing problem dimensionality and the
increasing number of training points. It is interesting to see a better performance
from just one gradient step.

That is why an additional mini-experimentation is done for the GD and
MAML models to investigate if there is an improvement with the additional
gradient steps. The results of this experimentation are given in Table 1. It is
observed from the table that there exists a point at which the gradient steps are
hurting the expected performance one would get in this range after the second
gradient step. Then, it can be conjectured that the number of gradient steps
has a regularizing effect on the task distributions with small variance. Despite,
the surprising results of MAML-like algorithms, the Ridge model is much more
stable and performs better than gradient-based methods for N ≥ D.

Table 1: Mean expected error for the range c : [0, 1] range with various gradient
steps for the MAML and GD models with η = 0.3234. Note that only D = 1,
N = 10 case (see Figure 4b) is presented.

niter

1 2 3 4 5 6 7 8 9 10
MAML 1.2132 1.1938 1.2067 1.2171 1.2318 1.2476 1.2773 1.3330 1.4622 1.7556

Effect of Task Mean m: The results can be seen in Figure 5. The most important
observation from this experimentation is that the Ridge model has an increasing
expected error for the cases of N ≤ D cases (see Figures 5a, 5d and 5e) and mostly
the best λ from the trials is found to be the lowest value, which makes the Ridge
model behave similar to the Linear model. Furthermore, other models which have
prior task information do not seem to be affected by the task mean shifting in
the task space, as expected. Again, the superiority of including information from
the task space is evident as the conventional regularization cannot deal with the
changing task distribution mean for N ≤ D.
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Fig. 4: The expected error for increasing task variance c when changing the
number of training samples for various problems of different dimensions.
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Fig. 5: The expected error for increasing task mean m when changing the number
of training samples for various problems of different dimensions.

Nonlinear Problem The nonlinear problem introduced in Section 4 has param-
eters controlling the dimensionality D, number of training samples N , number



10 O.T. et al.

of gradient steps niter, the task variances and means m1 and m2, c1 and c2,
and the variance of the input samples k. Note that only some of the parameters
are discussed in this section. Unless the parameter in the configuration is under
investigation, the default values are utilized. And, the default values are given as
σ = 1, m1 = 1, m2 = 0, c1 = 2, c2 = 2, k = 1, niter = 10. Moreover, the number
of tasks drawn (NT ), and dataset draws (NZ) for approximating the expected
error given in Equation 3 are taken to be 50 each. Finally, the test set size is
taken as 1000.

Effect of Number of Gradient Steps niter: It can be seen from Figure 6a that a
single realization of the Kernel Ridge model can have a lower expected error for
an extreme value of 1 training sample for the 1-dimensional problem. However,
as the number of training samples increases for a given problem dimensionality
MAML model starts showing a lower expected error (see Figure 6b). Moreover,
the further increase in training samples to 50 lowers the difference in expected
error for given models. Another interesting observation is, that for N ≤ D Kernel
Ridge model can achieve a lower expected error, and for all the other cases one
might find a better MAML model given that sufficient gradient steps are allowed.
Moreover, it can be observed that the difference between random GD and MAML
is low in terms of expected error for most of the presented problems. Finally,
in cases where MAML outperforms Kernel Ridge the number of gradient steps
required to get a lower expected error is low.
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Fig. 6: The expected error for the increasing number of gradient steps niter
used for adaptation when changing the number of training samples for various
problems of different dimensions.
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Effect of Number of Training Samples N : By looking at Figure 7 it can be seen
that for all the given dimensionalities there exists a training sample amount where
the expected error of the Kernel Ridge model is higher than MAML. Another
observation is that the randomly initialized model average performance is stable
over all number of training samples.

0 10 20 30 40 50

1

2

3

4

N

E
xp

ec
te

d
E

rr
or

Kernel Ridge-λ:2.2223
Bayes
MAML-lr:0.1112
random GD-lr:0.0001

(a) D = 1

0 10 20 30 40 50
0

5

10

15

20

N

E
xp

ec
te

d
E

rr
or

Kernel Ridge-λ:2.2223
Bayes
MAML-lr:0.1112
random GD-lr:0.0001

(b) D = 10

0 10 20 30 40 50

0

20

40

60

80

100

N

E
xp

ec
te

d
E

rr
or

Kernel Ridge-λ:0.0001
Bayes
MAML-lr:0.1112
random GD-lr:0.0001

(c) D = 50

Fig. 7: The expected error for the increasing number of training samples and
problem dimensionality.

Effect of Phase Task Variance c2: Remembering that the task variance effect for
the linear problem had some interesting properties where even a single gradient
step resulted in a lower expected error. One might wonder if that is the case
for the nonlinear problem as well. As can be seen in Figure 8b a similar effect
is observed for the nonlinear problem. However, for this case, the decreased
expected error of MAML is only better than a randomly initialized model. This
indicates that a better performance can be achieved with a regularization-based
conventional learner. The only clear advantage of utilizing MAML is seen in
the case where there is only 1 training sample. However, even the randomly
initialized model performs better than the Kernel Ridge model for that case and
what MAML adds is just a slight improvement.

Additional experimentation results for σ for linear and nonlinear problems
can be found in the Appendix, it is observed that increasing noise has similar
behavior with single task learning models. Moreover, the effect of input variance
is investigated and found that the gradient descent based methods perform poorer
for the linear problem.

5.1 Discussion

Upon our investigation, it is found empirically that meta-information about the
task space can help the generalization performance in linear and nonlinear problem
settings even with limited gradient steps. Increased generalization performance of
MAML compared to single task learning models on expectation when the tasks
that are in consideration are close to each other is observed, where the same
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Fig. 8: The expected error for increasing task variance for phase c2 used for
adaptation when changing the number of training samples for various problems
of different dimensions.

observation is made theoretically in [5]. This observation suggests that there
is a regularizing effect of limiting the gradient steps used for adaptation. We
conjecture that after the meta-learning stage intermediate model parameters w̄
are closer to the test set optimum compared to the proximity of train and test set
optimums. This type of behavior is investigated in [14] as well, where the large
learning rate in the training phase acts as a regularizer due to the discrepancy
between train and test loss landscapes.

This limitation of adaptation steps is noted in [2,13] that tries to improve the
MAML adaptation step so that the adaptation is limited to fewer gradient steps,
preferably one. Our findings suggest that the expected performance of these
methods should be investigated as well since some of the generalization power of
MAML might be coming from the regularization induced by not optimizing the
training loss perfectly. This hypothesis is supported by the findings of [16] which
concludes that the performance gain of MAML is about feature reuse instead of
rapid learning.

6 Conclusion

Upon our investigation, we observed that single-task learners are able to compete
with MAML when a limited number of gradient steps are allowed. We show that
even in the case of general regularization, and when there is enough data, a
single-task learner can outperform on expectation of a meta learner. Especially
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when the tasks observed start to deviate from each other. It indicates that the
regularization-based meta-learners similar to the ones presented in [4], can be
competitive and robust enough for much wider task variance. However, it also
should be suitable for nonlinear problem settings. Moreover, regularization-based
methods similar to the ones presented in [10] for MAML can prove useful to
extend the generalization performance of MAML to wider task variances.

This study only utilizes synthetic data, since the computational burden of
expected error analysis is high. Thus, more in-depth expected performance should
be done for the Omniglot dataset and other widely used supervised few-shot
learning benchmark datasets with improvements introduced on top of MAML.
We believe that understanding all the contributing factors to generalization
performance is key to correct use cases of meta-learning methods.
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Fig. 9: [Linear Problem]: The expected error for increasing noise standard
deviation σ when changing the number of training samples for various problems
of different dimensions.
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Fig. 10: [Linear Problem]: The expected error for increasing input variance k
when changing the number of training samples for various problems of different
dimensions.
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Fig. 11: [Nonlinear Problem]: The expected error for increasing noise standard
deviation σ when changing the number of training samples for various problems
of different dimensions.
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