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Abstract. Learning curves illustrate how the generalization performance
of a learner evolves with more training data. While this is a useful tool
to characterize learners, not all learning curve behavior is well under-
stood. For instance, it is sometimes assumed that the more training data
provided, the better the learner performs. However, counter-examples
exist for both classical machine learning algorithms and deep neural net-
works, where errors do not monotonically decrease with training set size.
Loog et al. [11] describe this monotonicity problem, and present sev-
eral regression examples where simple empirical risk minimizers display
unexpected learning curve behaviors. In this paper, we will study two
of these proposed problems in detail and explain what caused the odd
learning curves. For the first, we use a bias-variance decomposition to
show that the monotonic decrease in the learning curve is caused by an
increase in the variance, which we explain by a mismatch between the
model and the data generating process. For the second problem, we ex-
plain the recurring increases in the learning curve by showing only two
solutions are attainable by the learner. The probability of obtaining a
configuration of training objects that leads to the high risk solution typ-
ically decreases as the training set size increases. However, for particular
training set sizes, additional configurations that produce the high risk
solution become possible. We prove that these additional configurations
increase the probability of the high risk solution and therefore explain
the unusual learning curve. These examples contribute to a more com-
plete understanding of learning curves and the possibilities and reasons
behind their various behaviors.

1 Introduction

Learning curves are plots demonstrating how the number of training samples
influences the generalization performance of learners. They are essential tools
to understand and compare the learning behavior of different machine learning
models. Among others, they have been used to predict the maximum achievable
accuracy, estimate how much data is required for the desired accuracy, predict
the generalization performance of learners [5,9] to save computational costs and
avoid the usage of the excess training samples [6].

A large quantity of research investigated learning curves for different prob-
lems or tried to find a common model for learning curves of various problems
[17]. Different models have been proposed to describe learning curves, such as
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exponential or logarithmic models [5,6,8]. While generating the learning curves
for assorted problems, many unexpected behaviors of learning curves have been
observed. Some learning curves exhibit non-monotonic behaviors. This phe-
nomenon is opposed to the common assumption that “The more training data,
the better the performance of the learner”, as proposed in [6,14,7].

One well-known example is the sample-wise double descent learning curve,
which exists not only in simple models such as linear regression, but also appears
in deep neural networks [2]. Two other striking examples are presented in Loog et
al. [11]. In the first, the expected risk increases as more training data are provided
(Figure 1a). In the second problem, the learning curve shows a periodic pattern
(Figure 1b). The reasons for the non-monotonically decreasing learning curves
in these examples are poorly understood. Our goal in this work is to explain why
these behaviors occur and to contribute to a better understanding of learning
curve behavior.

(a) Influence of the size of the training
data on the risk of Aerm with L2 loss
and linear functions without intercept.

(b) Influence of the size of the training
data on the risk of Aerm with L1 loss
and linear functions without intercept.

Fig. 1: The two studied learning curves with unexpected behaviors

The remainder of this paper is structured in the following way. Section 2 will
present other works in the field on learning curves and discuss how our work is
related to them. Section 3 will introduce the problem settings of the investigated
learning curves and our analysis methodology. Section 4 will display the results of
the analysis. Section 5 will discuss how our study answers the research question
and its limitations. Finally, section 6 concludes.

2 Related Work

There is a large number of studies regarding learning curves in general. Many
researchers have tried to find suitable functional models for learning curves
[5,6,10,17]. Duin [3] investigated the learning curves of a variety of algorithms
to find a reasonably well-performing algorithm for small-sample-size problems.
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Likewise, much research has focussed on understanding the behavior of learning
curves, leading to various assumptions about how learning curves should behave.
Haussler et al. [7] developed a theory to find rigorous bounds for learning curves.
Provost et al. [15] suggested that learning curves should exhibit a steep decrease
in error at the early stage, a more gentle decrease in the middle stage, and a
plateau afterward. Others have claimed that the accuracy should increase as
more data is provided [6,14,7].

However, while investigating learning curves for various problems, many
learning curves not conforming with these assumptions have been discovered.
A well-known example is learning curves that exhibit a “double decent” or peak-
ing pattern. This phenomenon was probably first recorded in [16] and relates to
the currently equally popular double-descent complexity curves [1,4,12,14].

In [11], the authors show that even with a simple distribution and a basic
learner, learning curves can be ill-behaved. These problems and their learning
curves are the focus of this paper. Unlike most of the previously mentioned
studies, which estimate learning curves using real-world datasets with unknown
distributions, Loog et al. [11] proposed a simple distribution and used it to gener-
ate artificial datasets. Since the distribution is known and simple, the expected
risk can be calculated exactly, instead of estimated using test sets. Thus, the
possibility that the odd learning curves are caused by non-representative test
sets is safely ruled out. We will try to explain why these learning curves have
unexpected behaviors.

3 Problem Setting and Methodology

We will first formally describe the two problems and introduce terminology in
section 3.1. Then, we will present the two disparate solution strategies we applied
to explain the behavior of the learning curves in section 3.2.

3.1 Problem Setting: the Distribution and the Learners

The two problems are originally proposed in [11]. In both problem settings, the
following aspects are the same:

The ground truth distribution D is (x, y) ∈ R × R = Z, this distribution
only has a non-zero probability at two points a = (1, 1) and b = ( 1

10 , 1). Let
P ((x, y) = a) = pa and P ((x, y) = b) = 1− pa = pb.

The hypothesis class H is all linear functions without intercepts; i.e., H =
{h(x) = βx |β ∈ R}.

Both are regression problems and use ERM as the learner. A learner A
maps the set of all possible datasets to elements in the hypothesis class, i.e.
A : Z ∪ Z2 ∪ Z3 ∪ ... ∪ Zn → H. Let L : H → R denote the loss function,
R : H → R denote the risk function, and Sn = {(x1, y1), (x2, y2), ..., (xn, yn)}
denote a set of samples with size n. The risk R(h) for a hypothesis h ∈ H
is R(h) = E(x,y)L(h(x), y) and the empirical risk R̂(h), given a training
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dataset Sn, is R̂(h) = 1
n

∑n
i=1 L(h(x), y). An empirical risk minimizer Aerm

is a learner which outputs the hypothesis with minimum empirical risk, given
a set of training data.

The main differences between the two problem settings we discuss lie in the value
of pa and the loss function used.

Problem I: pa = 0.001. The loss function is L2 loss: L(h) = (h(x) − y)2. The
empirical risk minimizer Aerm has a closed-form solution (XTX)−1XTY ,
where X =

[
x1, x2, . . . , xn

]T and Y =
[
y1, y2, . . . , yn

]T .
Problem II: pa = 0.1. The loss function is L1 loss: L(h) = |h(x)− y|. The em-

pirical risk minimizer Aerm does not have a closed-form solution in general.
However, we will show (section 4.2) that it has a closed-form solution when
X,Y ∈ R.

3.2 Disparate Methods for Analyzing the Problems

Due to the divergent nature of the two problems, we will approach them using
distinct methods. For Problem I, we use a bias-variance decomposition to break
down the expected risk into bias and variance terms, and analyze the resulting
terms. This method has previously been used in [13] to explain the double descent
phenomenon occurring in the learning curves of linear regression (ERM with L2
loss). After observing the curves of these two terms, we focus on the variance
term and further inspect the cause of its increase.

When interpreting the learning curve of Problem II, we will first derive
the closed-form solution of Aerm, to show only two solutions are possible: the
risk optimal solution and a sub-optimal solution. We show that the expected
risk depends on the probability of Aerm producing the sub-optimal hypothesis.
We then show that this probability can be decomposed into the sum of the
probability of different configurations of training objects. The periodic behavior
is then explained by the interplay between the decreasing probability of existing
configurations and periodic increases in probability due to new configurations
becoming possible.

4 Analysis

4.1 Problem I

We apply a bias-variance decomposition to the expected risk for Problem I
and identify the cause of the increase in the learning curve by observing how
the resulting terms change with respect to the number of training samples. We
show that ridge regression can mitigate the problem and then analyze why the
problem occurs.
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Bias-Variance Decomposition In the setting of Problem I, given the L2
loss and linear hypotheses without intercept, the true risk for a fixed sample size
n is ESnR(Aerm(Sn)) = ESnE(x,y)(β̂x − y)2, β̂ = Aerm(Sn). This expression
can be decomposed in the following way:

ESnR(Aerm(Sn)) = ESnE(x,y)(β̂x− y)2

= E(x,y)ESn(β̂x− ESn β̂x+ ESn β̂x− y)2

= E(x,y)ESn

{
(β̂x− ESn β̂x)2 + (ESn β̂x− y)2 + 2(β̂x− ESn β̂x)(ESn β̂x− y)

}
= E(x,y)

{
V arSn(β̂)x2 + (ESn β̂x− y)2 + ESnG

}
ESnG = ESn

{
2(β̂x− ESn β̂x)(ESn β̂x− y)

}
= 2ESn

{
x2β̂ESn β̂ − β̂xy − x2ESn β̂ESn β̂ + ESn β̂xy

}
= 2

{
x2ESn β̂ESn β̂ − ESn β̂xy − x2ESn β̂ESn β̂ + ESn β̂xy

}
= 0

Thus, ESnR(Aerm(Sn)) = E(x,y)

{
V arSn(β̂)x2 + (ESn β̂x− y)2

}
= E(x,y)x

2V arSn(β̂) + E(x,y)(ESn β̂x− y)2

We will call the term Exx
2 ·V arSn(β̂) variance and the term E(x,y)(ESn β̂x−

y)2 squared bias. Figure 2 shows how squared bias and variance are changing
with respect to the training size n. This shows that the increase of the variance
term surpasses the decrease of the squared bias term, leading to an increasing
expected risk.
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 p(a) = 0.001

ERM:Variance
ERM: Squared Bias

Fig. 2: Squared bias and Variance terms with respect to the growth of n in
Problem I
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Mitigating the Variance Increase We consider ridge regression Aridge, to
see whether regularization can mitigate the increase in variance and lead to a
decreasing learning curve. Aridge(S

n) = argminβ∈R λ||β||2 +
∑n

i=1(βxi − yi)
2,

where λ ∈ [0,+∞) is a hyper-parameter controlling the strength of the regu-
larization effect. The larger the λ, the stronger the regularization effect is. The
closed-form solution of Aridge is (XTX + λI)−1XTY . As shown in Figure 3a,
with λ = 0.1, the variance is lower compared to Aerm and grows at a slower rate,
while the squared bias starts at a higher value and decreases faster, as shown in
Figure 3b. Looking at different values for lambda, λ = {0.05, 0.1, 0.25, 0.5}, we
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Fig. 3: Comparison of the variance and squared bias terms for ERM and ridge
regression

find that learning curves of Aridge decrease monotonically for n = 1, 2, ...., 40,
(Figure 4a), except when lambda is small. When zoomed in (Figure 4b), the fig-
ure also shows that with a relatively small λ, Aridge can achieve a lower expected
risk compared to Aerm, when n is large enough.

Explaining the Variance Increase The increase in the variance term runs
contrary to the intuition that a larger number of training samples should lead to
lower variance. One explanation for the effect is that the distribution does not
fit the linear model Y = βX + ϵ, where Eϵ = 0, and X and ϵ are independent.
We will show that if the data does fit this model, we can expect a decreasing
learning curve. In order to investigate the variance, we first calculate ESn β̂:

ESn β̂ = ESn(XT
n Xn)

−1XT
n Y

= ESn(XT
n Xn)

−1XT
n (Xnβ + ϵn)

= EXn(X
T
n Xn)

−1(XT
n Xn)β + EXn(X

T
n Xn)

−1XT
n Eϵnϵn

Since ESnϵn = 0, we have ESn β̂ = β. Next consider V arSn(β̂):
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(a) Overview of performance with different
lambda

(b) When zooming in, we can observe that
lower expected risk is achieved when n is
large enough with lambda 0.1 and 0.05.

Fig. 4: Compare the performance of different lambda values

V arSn(β̂) = ESn(β̂ − β)2

= EXnEϵn((X
T
n Xn)

−1XT
n (Xnβ + ϵn)− β)2

= EXn
Eϵn((X

T
n Xn)

−1XT
n Xnβ + (XT

n Xn)
−1XT

n ϵn − β)2

= EXn
Eϵn((X

T
n Xn)

−1XT
n ϵn)

2

= EXnV arϵn((X
T
n Xn)

−1XT
n ϵn)

= EXn

[
(XT

n Xn)
−1XT

n CovϵnϵnXn(X
T
n Xn)

−1
]

Since all training samples are i.i.d., we have Covϵnϵn = V ar(ϵ) · In. Hence

V arSn(β̂) = EXn

[
V ar(ϵ)(XT

n Xn)
−1(XT

n Xn)(X
T
n Xn)

−1
]

= V ar(ϵ)EXn(X
T
n Xn)

−1

= V ar(ϵ)EXn(

n∑
i=1

x2
i )

−1

Since EXn
(
∑n

i=1 x
2
i )

−1 decreases as n increases, the variance also decreases as n
increases.

Under the same assumptions, the squared bias term E(x,y)(ESn β̂x − y)2 =
EϵEx(βx − (βx + ϵ))2 = Eϵϵ

2, which is a constant. Therefore, when the dis-
tribution fits the linear model, the learning curve will always decrease. Even
though the distribution in Problem I can be modelled as Y = βX + ϵ, where
β = argminβ∈R E(x, y)(βx − y)2, ϵ is dependent on X and Eϵ ̸= 0. We can
therefore conclude that one possible reason for the increasing learning curve is
that these two essential conditions are missing.
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4.2 Problem II

To explain the unexpected periodic behavior of the learning curve for Problem
II, we first derive the closed-form solution for both Aerm and the optimal β.
Then, we show that the expected risk depends on the probability of Aerm out-
putting a specific hypothesis. We then investigate why the curve of this proba-
bility has periodic behavior.

Closed-form Solution of Aerm and the Optimal β In the setting of Prob-
lem II, the loss is L1 loss. Therefore, Aerm can be be expressed as Aerm =
argminβ∈R

∑n
i=1 |βxi − yi|. We first derive the closed form solution for Aerm.

Let n denote the size of the training dataset, na denote the number of points
a = (xa, ya) in the training dataset, and nb denote the number of points b =
(xb, yb). The empirical risk for all hypotheses β is therefore

1

n

n∑
i=1

|βxi − yi| =
1

n
(na|βxa − ya|+ nb|βxb − yb|).

Consider the sign of the gradient with respect to β, we discard the positive 1
n ,

(1) For β ∈ [0,
ya
xa

)

d

dβ
(na|βxa − ya|+ nb|βxb − yb|) =

d

dβ
(na(ya − xaβ) + nb(yb − xbβ))

= −naxa − nbxb

< 0

(2) For β ∈ [
ya
xa

,
yb
xb

]

d

dβ
(na|βxa − ya|+ nb|βxb − yb|) =

d

dβ
(na(xaβ − ya) + nb(yb − xbβ))

= naxa − nbxb

(3) For β ∈ (
yb
xb

,+∞)

d

dβ
(na|βxa − ya|+ nb|βxb − yb|) =

d

dβ
(na(xaβ − ya) + nb(xbβ − yb))

= naxa + nbxb

> 0

If naxa − nbxb ≥ 0, then the derivative is only negative when β ∈ [0, ya

xa
),

which means the function stops decreasing when β ≥ ya

xa
. Therefore, the mini-

mum of this function is reached at the point β = ya

xa
. In the other case, when

naxa − nbxb < 0, the derivative is negative when β ∈ [0, yb

xb
), which means the

function stops decreasing when β ≥ yb

xb
. Therefore, the minimum of this function
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is reached at the point β = yb

xb
. The closed form solution of Aerm is thus the

following.

β̂ =


yb
xb

if naxa − nbxb < 0

ya
xa

else

The same procedure is applied to find argminh∈H R(h) = E(x,y)|βx − y| =
pa|βxa − ya|+ pb|βxb − yb| to give

β =


yb
xb

if paxa − pbxb < 0

ya
xa

else.

Under the setting of Problem II, paxa − pbxb =
1
10 · 1− 1

10 · 9
10 > 0, β = ya

xa
.

Analysis of the Expected Risk We now analyze the expected risk for a given
n. Let PSn(β̂ = ρ) denote the probability of Aerm outputting ρ when the size
of the training dataset is n, β̂1 = ya

xa
, β̂2 = yb

xb
the two possible solutions, and

Pn
1 = PSn(β̂ = β̂1) and Pn

2 = PSn(β̂ = β̂2) = 1−Pn
1 the probability of attaining

these solutions. The expected risk can be written as the risk of each solution
multiplied by the probability of attaining that solution:

ESnR(Aerm(Sn)) = Pn
1 · E(x,y)|β̂1x− y|+ Pn

2 · E(x,y)|β̂2x− y|.

As β̂1 = argminβ∈R E(x,y)|βx − y|, the risk of β̂1 is smaller than the risk of
β̂2. Hence, the smaller Pn

2 is, the larger Pn
1 and the smaller the expected risk

for n. Therefore, to explain the periodic behavior (shown in Figure 5), we must
investigate how Pn

2 changes with respect to the number of training samples.
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xb = 0.1

Fig. 5: The change of Pn
2 with respect to n

Note that if we change the value of pa such that paxa−pbxb < 0, then β = yb

xb
.

In this case, β̂2 = argminβ∈R E(x,y)|βx− y| and the smaller Pn
2 is, the larger the
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expected risk will be. An example is shown in Figure 6 where we set pa = 0.05
and all the other values remain the same.
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Fig. 6: The curve of Pn
2 and the learning curve when pa = 0.05 leading to β = β̂2

Explaining the Periodic Pattern of Pn
2 The question of why the learning

curve behaves as in Figure 1b can be reduced to the question why the curve of Pn
2

has the behavior shown in Figure 5. To investigate Pn
2 , we need to understand

when Aerm will output β̂2. This happens when

β̂ =
yb
xb

= β̂2 if naxa − nbxb < 0.

Thus, for a given n, Pn
2 = PSn(naxa − nbxb < 0). nb can be substituted by

n− na.

naxa − nbxb < 0

naxa − (n− na)xb < 0

na(xa + xb) < nxb

na <
xb

xa + xb
n

na <
n

xa

xb
+ 1

PSn(naxa − nbxb < 0) = PSn(na <
n

xa

xb
+ 1

) =
∑
i∈NA

PSn(na = i), where NA =

{i ∈ N| i < n
xa
xb

+1
}. Since n, i ∈ N, |NA| increases by 1, when n increases to

⌈xa

xb
+ 1⌉k, where k ∈ N. In this problem setting ⌈xa

xb
+ 1⌉ = 11 and as shown

in the Figures 1b and 5, the curves have an increase when n ∈ {x ∈ N|x =
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11k+1, k ∈ N}. Therefore, we claim that the increase of |NA| is the cause of the
sudden increase. In order to prove this, we consider

∑
i∈NA

PSn(na = i) before
and after |NA| increases by 1.

Let M = ⌈xa

xb
+ 1⌉ be the length of the periodicity and consider the difference

in probability when |NA| increases from k to k+1: P kM+1
2 −P kM

2 for any integer
k > 0. Two sources contribute to this difference: the change in probability of
the existing k configurations and the addition of the probability of the new
configuration. The change in the former is given by

K−1∑
j=0

(
kM + 1

j

)
(pa)

j(1− pa)
kM+1−j −

k−1∑
j=0

(
kM

j

)
(pa)

j(1− pa)
kM−j .

Note that this is the difference between the conditional distribution functions
(CDF) of two binomial distributions. These CDFs are equal to the regularized
incomplete beta function (indicated by Ix). We therefore have:

I(1−pa) ((M − 1)k + 2, k)− I(1−pa)((M − 1)k + 1, k) =

−
(
Mk + 1

k

)
k

Mk + 1
pka(1− pa)

(M−1)k+1, (1)

using the identity Ix(a+1, b) = Ix(a, b)−
(
a+b
a

)
b

a+bx
a(1−x)b. Note this difference

is negative for any probability pa.
Next consider the increase in Pn

2 caused by the additional configuration. This
is given by (

Mk + 1

k

)
(pa)

k(1− pa)
(M−1)k+1.

Comparing this to (1), we find that the decrease in probability is always k
Mk+1

times the increase caused by the additional configuration, hence the increase is
always bigger than the decrease. So, whenever |NA| does not increase when n
increases, Pn

2 decreases. However, when |NA| increases as well (which happens
every M training objects), Pn

2 is guaranteed to increase. This also directly implies
that the non-monotonic behavior for this learning curve keeps occurring for
arbitrarily large n.

Moreover, we can conclude that the shape of the curve showing how Pn
2

changes with respect to n will always demonstrate such periodic patterns re-
gardless of the value of pa. As shown in Figure 7, with either larger or smaller
values of pa the curve of Pn

2 still displays the same periodic pattern, which is
sudden increase after a fixed period of decrease. Moreover, the duration of one
period is dependent on ⌈xa

xb
+ 1⌉. As illustrated in Figure 8, the duration of one

period is always equal to ⌈xa

xb
+ 1⌉.

5 Discussion

Our goal was to explain why the learning curves generated under two problem
settings proposed by Loog et al. [11] exhibit non-monotonic behavior. For Prob-
lem I, we adopted the bias-variance decomposition to split the expected risk into
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bias and variance terms. The visualization and analysis of these two terms have
shown that the rapid increase in variance and the, in contrast, slower decrease in
bias leads to the ascending learning curve. We demonstrated that ridge regres-
sion can suppress the rapid increase in variance. It is unexpected for variances to
increase with more training samples. We suggested that this increase is caused
by the fact that the distribution of this problem does not fit certain modeling
assumptions (linearity, independence, and zero expected error). We supported
this insight by showing that if these assumptions do hold, the variance decreases
with more training samples. While this shows one way of adapting the problem
to guarantee monotonicity, alternative assumptions about the problem are pos-
sible (for instance, letting go of linearity) that we have not explored here. In
addition, these sufficient assumptions also do not offer a direct intuitive account
of why the variance increases.

For Problem II, we showed that the change in the probability of Aerm

outputting one of two possible hypotheses leads to the periodic pattern of the



Explaining Two Strange Learning Curves 13

learning curve. In this way, the problem is reduced to explaining why the curve
of this probability has periodic behavior, which we prove that the factors that
cause a decrease in the probability will periodically be negated by an additional
configuration increasing the probability.

We have explained some of the behavior of these examples, however, we did
not fully characterize them. It is an open question whether the learning curves
of both problems will converge to the optimal risk. If they will, how fast will
they converge? Can we give any upper bounds on the expected risk given the
size of the training dataset?

While, our goal was to shed some light on learning curves for two specific
problems, which use artificial distributions, an important question is how these
insights generalize to similar problems, or how they can inform our understanding
of strange learning curves that are observed empirically.

6 Conclusion

Our study focused on the strange learning curves introduced in Loog et al. [11].
The learning curves are generated from two similar regression problems while
using ERM as the learner. For Problem I, we discovered that the rapid increase
in variance and the relatively slow decrease in bias, with respect to the number of
training samples, lead to the ascending learning curve. In addition, we proposed
that the increase in variance is caused by the distribution not conforming with
the linear model. For Problem II, our analysis showed that the ERM only
outputs two possible hypotheses. The expected risk depends on the probability
of ERM outputting the suboptimal hypothesis. The curve of this probability also
presents the periodic pattern, which produced the strange learning curve which
we explain using a proof of this behavior. While this work has provided some
insights into the behaviors for these two specific problems, it also shows how the
study of such specific cases can help us better understand learning behavior in
general.
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A Appendix

Claim. Given a binomial distribution f(k, n, p) = P (X = k) =
(
n
k

)
pk(1− p)n−k,

the CDF F (k, n, p) = P (X ≤ k) = I1−p(n− k, 1 + k)

Proof. Denote 1− p as q,

Iq(n− k, 1 + k) =
Γ(n+ 1)

Γ(n− k)Γ(k + 1)

∫ q

0

tn−k−1(1− t)kdt (Integration by parts)

=
n!

(n− k − 1)!(k)!

[
1

n− k
tn−k(1− t)k

]∣∣∣∣q
0

+
n!

(n− k − 1)!(k)!

[
k

n− k

∫ q

0

tn−k(1− t)k−1dt

]
=

(
n

k

)
qn−kpk +

n!

(n− k)!(k − 1)!

[∫ q

0

tn−k(1− t)k−1dt

]
︸ ︷︷ ︸

Integration by parts

=

(
n

k

)
qn−kpk +

(
n

k − 1

)
qn−(k−1)pk−1

+
n!

(n− k + 1)!(k − 2)!

[∫ q

0

tn−k+1(1− t)k−2dt

]
...

=

k∑
i=0

(
n

i

)
qn−ipi

= P (X ≤ k)

Claim. Ix(a+ 1, b) = Ix(a, b)−
(
a+b
a

)
b

a+bx
a(1− x)b



16 Z. Chen et al.

Proof.

Ix(a+ 1, b) = Ix((a+ b)− (b− 1), (b− 1) + 1)

Ix(a, b) = Ix((a+ b− 1)− (b− 1), (b− 1) + 1)

Ix(a+ 1, b) =

b−1∑
i=0

(
a+ b

i

)
x(a+b)−i(1− x)i

=

b−1∑
i=0

[(
a+ b− 1

i

)
+

(
a+ b− 1

i− 1

)]
x(a+b)−i(1− x)i

= x

b−1∑
i=0

(
a+ b− 1

i

)
x(a+b−1)−i(1− x)i +

b−1∑
i=0

(
a+ b− 1

i− 1

)
x(a+b−1)−(i−1)(1− x)i

= xIx(a, b) +

b∑
i=0

(
a+ b− 1

i− 1

)
x(a+b−1)−(i−1)(1− x)i −

(
a+ b− 1

b− 1

)
xa(1− x)b

= xIx(a, b) + (1− x)Ix(a, b)−
(a+ b− 1)!

(b− 1)!a!
xa(1− x)b

= Ix(a, b)−
(a+ b)!

a!b!

b

a+ b
xa(1− x)b

= Ix(a, b)−
(
a+ b

a

)
b

a+ b
xa(1− x)b
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