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Abstract. The advent of electric driving poses novel scientific chal-
lenges. One such challenge is predicting the availability of electric vehi-
cle supply equipment (EVSEs). Previous work addressing this question
made use of insufficient data sources, limiting the available methods. In
this paper, we make use of a much larger amount of data, opening the
door to methods previously unused in this domain. The data used is
especially suited for prediction using deep learning models, because of
the high number of similar units of EVSEs present in the data. Specific
deep learning architectures specialised in learning temporal dependen-
cies are compared in their ability to predict the minutes of availability
in a given hour for an EVSE. Long short-term memory and gated re-
current unit-based models are combined with a temporal convolution
layer and compared in their performance on unseen periods and units.
Of these models, the convolutional long short-term memory architec-
ture was found to perform the best with a root mean squared error of
1.2 minutes per hour. However, we conclude that both architectures are
similar in their performance, as both models were able to generalise well
to unseen periods and to unseen EVSEs in those periods.

Keywords: Electric Vehicle Supply Equipment · Time Series Forecast-
ing · Deep Learning.

1 Introduction

While still relatively small, the market for electric cars is growing rapidly [19].
Qualitative studies performed in different countries found that a lack of charger
availability is a concern for potential electric car owners [4, 11, 26]. A quantitative
analysis confirmed this, suggesting that an increase in charger availability has a
positive effect on the uptake of electric driving [35]. Therefore, accurate forecasts
regarding EVSE availability are of importance for advancing electric vehicle
adoption.

In this paper, our aim is to predict the hourly availability of different units
of EVSEs as accurately as possible. In order to achieve this goal, two meth-
ods for predicting multiple related time series are compared: convolutional long
short-term memory neural networks (CNN-LSTM) and convolutional gated re-
current unit neural networks (CNN-GRU). This comparison is summarised in
the following research question:
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How do convolutional long short-term memory and convolutional gated
recurrent units perform when forecasting electric vehicle supply equip-
ment?

Performance in this context is measured using the root mean squared error
(RMSE). The dataset for this paper is provided by Eco-Movement, a company
specialising in EVSE data. This dataset distinguishes itself from datasets in
previous studies because it combines data from various sources, vastly increasing
the size and accuracy of the data. The availability of charge points across Europe
is measured as session data, provided by various charge point operators for the
years 2020 and 2021. Data from 2020 is used for training and data from 2021 is
used for testing. An added challenge is presented by the fact that some EVSEs
present in the test set are not present in the training set at all.

As mentioned above, the main contribution of our paper lies in the evaluation
of the suitability of deep learning methods on forecasting EVSE availability at
such a large scale. Existing work in this field uses insufficient data, focuses on
different aspects of EVSEs, such as energy consumption, or deals with specific
subsets of data, such as household chargers.

Our experiments show that, generally speaking, the RMSE performance of
both models is quite similar across most hyperparameter settings. While the
models are able to generalise well to unseen periods as well as unseen EVSEs,
models created with hyperparameters that make the model too complex are not
able to generate accurate predictions.

The rest of this paper is organised as follows. Section 2 situates our work by
providing an overview of existing literature. The CNN-LSTM and CNN-GRU
models, as well as a baseline algorithm, are introduced and elaborated upon in
Section 3. Subsequently, in Section 4, we lay out our experimental set-up and
present and interpret our results, followed by a discussion. Finally, we conclude
the paper in Section 5.

2 Related Work

In this section, we situate our work by reviewing the related existing literature.
First, we describe the broader field of research regarding electric vehicle use.
Then, we discuss the field of EVSE-related forecasting, indicating gaps in the
existing literature. In addition, we introduce the methods chosen for use in this
paper, weighing them against other possible methods.

With the rise of electric driving, interest in studying topics concerning plug-
in vehicle charging has also grown. These topics include forecasting charging
schemes [16, 21], charging infrastructure [14], and electric grid integration [9].
Further topics include predicting the availability of charging spots as well as
their energy consumption.

Straka et al. focus on explaining energy consumption [29]. Their work focuses
on EVSE locations in the Netherlands only, using data enriched with geospatial
information. Their work is able to explain why energy consumption is at a certain
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level for specific EVSEs very well, though the use of many features makes it less
suitable for forecasting further ahead.

Other works include a study on classifying whether household chargers will
be used the next day using (a combination of) various machine learning algo-
rithms [1]. This focus is of specific interest for power grid operators, as it helps
them predict the electrical load.

Buzna et al. focus on publicly available charging stations [5]. This paper uses
a hierarchical approach to create probabilistic electrical vehicle load forecasts.
While this methodology is shown to predict well and be applicable to new regions,
it does have significant drawbacks in the context of our work. As discussed before,
the use of many features as inputs is infeasible in this context. Additionally, only
the methodology is shown to be applicable to new regions, extending the forecasts
to new regions still requires training separate prediction models for these regions.

Another study focusing on publicly available EVSEs is performed by Bik-
cora et al. [2]. Their work makes use of generalised linear models to predict
availability of two particularly busy EVSEs. The authors find that using lags in
combination with time indicator variables can be sufficient to obtain accurate
forecasts. However, their approach requires a different model for each connector,
with performances highly dependent on the specific charge point. On a small
scale, separate models for specific EVSEs might not pose a problem. However,
training such a number of models on data as large as ours is infeasible.

From the above, it becomes apparent that our work is unique in its ap-
proach regarding focus and scale. While other papers with similar focus exist,
the amount of data used is unprecedented. The much larger amount of data
available for this study opens the door for methods that are more advanced
than those used previously in existing work. At the same time, the scale of the
data results in a requirement to use these methods, as fitting separate models for
every EVSE has become infeasible. Therefore, the availability of EVSEs needs to
be predicted using not only a methodology, but also a model that can generalise
across related units.

Recent developments in processing multiple related time series stem from
deep neural networks (DNN). Prominent examples of DNN architectures for time
series forecasting are long short-term memory (LSTM) [17] and gated recurrent
units (GRU) [7]. A widely used advancement of the LSTM architecture is the
inclusion of convolutional layers (CNN-LSTM) [13, 23, 22, 30].

Though less common, the GRU architecture is occasionally extended with the
inclusion of convolutional layers (CNN-GRU) as well [18, 32]. As the CNN-GRU
architecture is used less frequently, there is also a smaller number of performed
studies comparing the CNN-LSTM and CNN-GRU architectures. Research that
has been conducted comparing these methodologies suggests that CNN-GRU
typically performs better than CNN-LSTM [10, 28]. The more numerous compar-
isons of LSTM and GRU show more ambiguity in the performance differences of
these methods. Some studies report that GRU improves prediction performance
over LSTM [27, 33], while others find little difference [12, 24, 34].
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Emerging advancements in the broader forecasting literature include using
LSTM in an encoder-decoder based approach [20, 6]. This approach has the
major drawback of only forecasting sequences of a fixed length. Conventional
methods that predict one time step are more flexible in the amount of steps
they can predict, as the predictions can themselves be used as inputs for further
periods.

In summary, the expansion of electric driving poses several questions. One of
these questions is how EVSE availability can be predicted effectively. Prior work
related to this question is lacking in the data used, which results in an inability
to produce models that generalise well to new periods or EVSEs. We aim to
close this gap in literature by using a dataset large enough to train advanced
methods that do allow such generalisation. The methods we use to predict EVSE
availability are CNN-LSTM and CNN-GRU. The performances of these models
are compared against each other and a simple, but strong, baseline. The following
section provides a technical explanation of these models.

3 Methodology

In this section, we describe the data and methodology used in this paper. We
start with a specification of the data source and the preprocessing steps taken
for different algorithms. Then, we provide a technical explanation of the baseline
model, after which the CNN-LSTM and CNN-GRU architectures are formally
specified. Subsequently, we describe the software infrastructure used in our ex-
perimental analysis.

3.1 Data and Preprocessing

The dataset for this paper is provided by Eco-Movement, a company specialising
in EVSE data. As mentioned in Section 1, this dataset combines data from
various sources, and is larger and more accurate than data used in prior studies.

The availability of charge points across Europe is measured as session data,
provided by various charge point operators for the years 2020 and 2021. Because
of the temporal dependencies in the data, observations made in 2020 are assigned
to the training set and observations made in 2021 are assigned to the test set.
This results in different sets of EVSEs in the two sets due to EVSEs being
added or removed over time. The resulting dataset contains 39 215 EVSEs in
the training set and 54 479 EVSEs in the test set. A total of 33 556 EVSEs are
present in both the training set and the test set. There are therefore 5 659 EVSEs
present in the training set but not in the testing set and 20 923 EVSEs present
in the testing set but not in the training set.

Changes in availability status are saved as events in the database. Table 1
shows 3 example observations of such events. In order to make the data suitable
for time series analysis, the sessions are used to create time series indicating the
available minutes per hour. The observations for each hour are then divided by
60 to scale all values to fall between 0 and 1.
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Table 1. Example rows of raw data

Timestamp Status

2019-12-31 16:46:07 charging
2020-01-01 06:41:02 available
2020-01-01 11:46:12 charging

After dummy variables indicating month of year, day of week and hour of
day are added, the time series is transformed into a sliding window. The sliding
window consists of four weeks of hourly availability data with the time dummies
and the availability in the next hour, which serves as the outcome label. Table 2
shows the resulting data from preprocessing the example data from Table 1 using
the above steps up to the transformation into windows.

Table 2. Example rows of preprocessed data. Omitted columns are marked with dots

Availability Jan Feb ... Mon Tue Wed ... 12AM 01AM 02AM 03AM 04AM ...

0.000 1 0 ... 0 0 1 ... 1 0 0 0 0 ...
0.000 1 0 ... 0 0 1 ... 0 1 0 0 0 ...
0.000 1 0 ... 0 0 1 ... 0 0 1 0 0 ...
0.000 1 0 ... 0 0 1 ... 0 0 0 1 0 ...
0.000 1 0 ... 0 0 1 ... 0 0 0 0 1 ...
0.000 1 0 ... 0 0 1 ... 0 0 0 0 0 ...
0.684 1 0 ... 0 0 1 ... 0 0 0 0 0 ...
1.000 1 0 ... 0 0 1 ... 0 0 0 0 0 ...
1.000 1 0 ... 0 0 1 ... 0 0 0 0 0 ...
1.000 1 0 ... 0 0 1 ... 0 0 0 0 0 ...
1.000 1 0 ... 0 0 1 ... 0 0 0 0 0 ...
0.770 1 0 ... 0 0 1 ... 0 0 0 0 0 ...

3.2 Baseline

Typically, extended periods of either 0 or 60 minutes of availability alternate
with single hours where the availability falls between 0 and 60. This means that
we are able to predict occupancy fairly accurately based on just two prior hours.
The baseline is laid out in Algorithm 1.

This algorithm is naive, because it is only able to predict a change in occu-
pation status after receiving the signal that something changed. Nevertheless,
due to the nature of the data, even such a naive baseline can produce very good
predictions. Beating this baseline is required to show that a model has gone be-
yond such a naive approach and is able to predict the moment the status of an
EVSE changes.
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Algorithm 1: Baseline
Data: At−1, the availability at t− 1, At−2, the availability at t− 2
Result: Ât, the predicted availability at time t

1 Ât ← 0;
2 if At−1 > At−2 or At−1 = 60 then
3 Ât ← 60;

4 return Ât;

3.3 Recurrent Neural Networks

As stated before, methods that use deep learning are advanced methods that are
capable of capturing complex relationships between features. Recurrent Neural
Networks (RNNs) are DNNs capable of learning temporal dependencies. In ad-
dition to the hidden neurons present in DNNs, RNNs contain context neurons.
Context neurons can save the state of a hidden neuron and use it as input in the
next iteration. Even though this makes them suitable for time series forecasting
problems, each time step being included in every subsequent context layer makes
RNNs especially vulnerable to the vanishing or exploding gradient problems.

The LSTM architecture solves these problems with the use of logic gates.
These gates allow the neural network to forget unimportant information and
retain information that is important. An LSTM unit consists of three gates: a
forget gate, input gate, and output gate. The forget gate determines if the context
neuron should clear its memory, the input gate determines if the context neuron
should add the current state to its memory, and the output gate determines if
the value of the context neuron is passed on to the output.

Gt = σ(WGxxt +WGhht−1 + bG), G ∈ {f, i, o} (1)

These gates are expressed in Equation 1, where f denotes the forget gate,
i denotes the input gate, and o denotes the output gate. As expressed in the
formulas, all gates decide based on the current input xt and previous output
ht−1, adjusting the weight vectors W and bias b while training. The sigmoid
function σ() indicates the binary choice each gate has.

The calculation of the context is laid out in Equations 2 and 3:

c̄t = tanh(Wcxxt +Wchht−1 + bc) (2)

ct = ft ◦ ct−1 + it ◦ c̄t (3)

In these equations, tanh() indicates the hyperbolic tangent function and ◦ is
the Hadamard product operator. The candidate context at time t is denoted by
c̄t, which is used for calculating the context ct if the input gate equals 1. If the
forget gate equals 0, the context of time t− 1 is forgotten.

The context is then used in Equation 4 to determine the output for the
current iteration ht:

ht = ottanh(ct) (4)
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The way these formulas work together in determining the context and the
output is presented visually in Figure 1. The nodes outside of the box repre-
sent the inputs and outputs of the LSTM unit, while the boxes represent the
gates, Hadamard and addition operations or hyperbolic tangent transformations
performed on the outputs of the gates.

ft it c̄t

ot

◦ +

◦

◦

tanh

ct−1

ht−1

xt

ct

ht

Fig. 1. Long Short-Term Memory

The GRU architecture consists of two gates: a reset gate, which is similar
to a forget gate, and an update gate, which is similar to an input gate. The
gates are defined similarly as in Equation 1, setting G ∈ {r, z}, where r denotes
the reset gate and z denotes the input gate. The candidate output is defined in
Equation 5:

h̄t = tanh(Whxxt +Whr(rt ◦ ht−1) + bh) (5)

The output is then determined as follows:

ht = (1− zt) ◦ ht−1 + zt ◦ h̄t (6)

Instead of a separate context and output, the output of previous iterations
poses as context to the model. In the calculation of the candidate output h̄t,
the reset gate determines whether the context of the previous output should be
forgotten. In the calculation of the current output ht, the input gate chooses
between the previous output and the candidate output.

The visual representation of a gated recurrent unit is shown in Figure 2.
The lower amount of gates in the GRU architecture as compared to the LSTM
architecture reduces model flexibility. However, it also reduces the time needed
for training. Moreover, empirical evidence discussed in Section 2 suggests that
the reduction in flexibility does not lead to lower prediction performance, though
the comparison depends on the task at hand.
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xt

ht−1 ◦ + ht

rt ◦ zt

1−

◦

h̄t

Fig. 2. Gated Recurrent Unit

3.4 Convolution

As mentioned earlier, convolutional layers can be prepended to both LSTM
and GRU architectures to improve forecasting performance. While hidden layers
are often fully connected, convolutional layers are sparsely connected, providing
regularisation and reducing overfitting. A convolutional layer in a DNN applies
an n-dimensional filter to the input. In the case of temporal convolution, the filter
is one-dimensional, as opposed to the two- or three-dimensional filters typically
applied in image-related tasks. Each filter in a convolutional layer performs a
linear operation, smoothing the input vector.

Combining a convolutional layer and a layer containing either LSTM nodes
or GRU nodes with one or more fully connected layers of hidden neurons and
an output layer completes the architecture. The convolutional kernels introduce
sparsity to the network and the LSTM and GRU nodes provide the ability to
learn temporal relationships. The hidden neurons are able to learn complex re-
lationships between the inputs. At the same time, the output layer transforms
these relationships into predictions of the minutes a charger is available in a
certain hour. A sigmoid activation function is used for the output to bind the
predictions to fall between zero and one. The predicted amount of minutes of
availability in an hour is then obtained by multiplying the prediction by sixty.
This ensures the predictions have an upper bound of sixty minutes in an hour
and a lower bound of zero minutes in an hour.

3.5 Infrastructure

The data is collected from a PostgreSQL database with SQL statements exe-
cuted via Psycopg 3 [31]. Further programming is done in Python 3.9. Apart
from Psycopg, the Python libraries used include NumPy [15], Pandas [25], and
Keras [8] using the TensorFlow GPU backend.
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4 Experiments

In this section, we first describe the experimental set-up and define the evaluation
metric. Then, we report the results of the experiments, and compare them to
the baseline performance. Finally, we discuss our results in the context of the
existing related work.

4.1 Hyperparameter Tuning

As is the case with other DNNs, the CNN-LSTM and CNN-GRU architectures
are highly flexible, have few hyperparameters and tune most parameters deter-
ministically. However, the specific architecture implementation does need to be
tuned. While there are more axes over which models can differ, this paper focuses
on depth and breadth. Performing an extensive search over the vast number of
possibilities is infeasible, as it would require training too many models. There-
fore, a constrained grid search over both axis is performed. The search space for
the depth is 1 or 2 fully connected layers and the search space for breadth is 32,
64 or 128 nodes in each layer. This results in six hyperparameter settings that
are compared for each model.

The models are compared to each other and the baseline on the 2021 test
set that was held out during training. The basis of comparison is the predictive
performance as measured by the RMSE. The answer to the research question is
found by comparing the RMSE of each respective model on the test data.

Algorithm 2: Incremental training
input : data, architecture, patience, batchsize
output: best performing model on validation data

1 initialise seen, model, best, tries;
2 while tries < patience do
3 unseen← anti-join of data and seen;
4 batch← 2 * batchsize random items of unseen;
5 train← first half of batch;
6 validate← second half of batch;
7 append train to seen;
8 fit model with train;
9 rmse← root mean squared error of model on validate;

10 if rmse < best then
11 best← rmse;
12 cache← model;
13 tries← 0;
14 else
15 increment tries;

16 return cache;
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Because of the large number of charge points in the data, not the entire
partition set apart for training is used. Instead, the training is performed incre-
mentally, the specifics of which are laid out in Algorithm 2. Training with this
procedure ensures that enough data is used to generalise well, while prevent-
ing the use of an unnecessarily large amount of data. This incremental training
introduces randomness due to the random selection of data for training and
validation. To mitigate this randomness, each parameter combination is fitted
three times. While fitting more folds would give a better estimate of each ar-
chitecture’s performance, a trade-off needs to be made to prevent training on
an unnecessarily large amount of data because of the repeated folds. For the
purpose of this paper, the parameters of this incremental training scheme are
set to a patience of 5 tries and a batchsize of 512 EVSEs.

4.2 Results

We now present our results, starting with the presentation of the baseline perfor-
mance. To this purpose, the mean and standard deviation of the RMSE across
EVSEs are reported. Then, the CNN-LSTM and CNN-GRU architectures are
compared on their prediction performance. The average RMSE of the three folds
trained with each hyperparameter setting is reported along with the standard
deviation among folds.

The RMSE found with the baseline model is 9.659 minutes, with a standard
deviation of 4.724 minutes. We use these results as a baseline reference for the
more advanced methods.

Table 3. RMSE scores in minutes on all EVSEs in the test set for the CNN-LSTM
and CNN-GRU models with varying depth and breadth. The lowest RMSE for each
architecture is marked in bold.

1 layer 2 layers

Architecture Breadth mean sd mean sd

CNN-LSTM
32 nodes 1.225 0.098 1.424 0.277
64 nodes 1.493 0.056 1.497 0.135
128 nodes 1.669 0.190 30.072 12.465

CNN-GRU
32 nodes 1.336 0.025 1.414 0.002
64 nodes 1.521 0.048 1.577 0.001
128 nodes 1.830 0.304 1.543 0.427

Results obtained using CNN-LSTM and CNN-GRU are shown in Table 3.
From these results, it is clear that most parameter settings of both architectures
resulted in a performance increase over the baseline. The results shown in bold
are the lowest RMSE scores for the two architectures. These scores were both
achieved on the hyperparameter settings that led to the least complex networks.
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That is, the best predictive performance for both the CNN-LSTM and CNN-
GRU architectures was found for networks with 32 nodes in each layer and a
single fully connected layer.

While most other parameter settings resulted in a low RMSE between 1
and 2 minutes per hour, the CNN-LSTM architecture with the most extensive
number of nodes and layers had a very high RMSE, showing no improvement
over guessing. A likely explanation for the high RMSE of CNN-LSTM models
with a breadth of 128 and a depth of 2 could be that such a broad model is
prone to get stuck in local minima. Another reason could be that the model
received too little data to train on, because of a patience or batchsize that were
too low to allow the model to have learned some dependencies before stopping
training. While performance might have been increased with a less strict choice of
patience and batchsize, it remains unclear if that would result in a performance
increase over the models that performed well with the current choice of patience
and batchsize. Therefore, the increased computational cost of fitting with less
restraining parameters is likely not offset by a better fitting model.

As the models were trained on a subset of the training data, the models’
ability to generalise to new EVSEs can be tested as well. A similar performance
on the testing data for EVSEs seen and unseen during training would indicate
an ability of the model to generalise to new EVSEs as well as to new periods,
whereas a gap in predictive performance would indicate that the models are able
to generalise to new periods only for EVSEs seen during training.

Tables 4 and 5 present the predictive performances on the testing data for
EVSEs seen during training and EVSEs not seen during training, respectively. As
is apparent from these tables, the performances are very similar. The RMSE of
predicting in new periods for EVSEs seen during training is generally a bit lower
than that for EVSEs not seen during training. However, the small magnitude of
the differences indicates that the models are able to generalise to unseen periods
as well as to unseen EVSEs in unseen periods.

While the average RMSE remains more or less stable across these parts of
the test set, the standard deviations of the RMSE across folds has fallen when
testing on unseen EVSEs as compared to testing on seen EVSEs. This decrease in

Table 4. RMSE scores in minutes on seen EVSEs in the test set for the CNN-LSTM
and CNN-GRU models with varying depth and breadth

1 layer 2 layers

Architecture Breadth mean sd mean sd

CNN-LSTM
32 nodes 1.179 0.103 1.332 0.126
64 nodes 1.498 0.115 1.467 0.155
128 nodes 1.601 0.139 28.788 13.218

CNN-GRU
32 nodes 1.298 0.011 1.587 0.123
64 nodes 1.664 0.080 1.525 0.247
128 nodes 1.634 0.066 1.599 0.017
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Table 5. RMSE scores in minutes on unseen EVSEs in the test set for the CNN-LSTM
and CNN-GRU models with varying depth and breadth

1 layer 2 layers

Architecture Breadth mean sd mean sd

CNN-LSTM
32 nodes 1.232 0.069 1.438 0.301
64 nodes 1.492 0.049 1.501 0.176
128 nodes 1.679 0.199 30.260 12.356

CNN-GRU
32 nodes 1.376 0.029 1.389 0.014
64 nodes 1.500 0.065 1.585 0.011
128 nodes 1.859 0.034 1.535 0.491

standard deviation can be intuitively explained by recognising the considerable
overlap between the unseen EVSEs in the testing data for different folds. If there
is much overlap between the seen EVSEs in different folds for the same model,
then the set of unseen EVSEs is similar as well. However, even if there is little
overlap of seen EVSEs in the training data, a large portion of the same EVSEs
is still marked as unseen in both folds.

As most models show an improved RMSE over the baseline, we suspect that
these models have the ability to predict a change in status, instead of only react-
ing to such a change. In order to substantiate this claim, we analyse the RMSE
only on those hours where the availability changed. With these constraints, the
performance of the baseline decreases to an RMSE of 33.455 minutes with a
standard deviation of 2.000 across EVSEs. The results of testing the models on
one fold for each hyperparameter combination are shown in Table 6.

From the table, it becomes apparent that performance typically fell compared
to the performance on the entire testing data. However, the results still show
an improvement over the baseline algorithm with the same constraints. This
indicates that the models indeed learned to predict a status change, instead
of merely reacting to one. The relative performance of most complex models
increased on the subset of status changes. An explanation for this is that these
models have not yet learned to predict mostly 0 or 60 minutes of availability.

Table 6. RMSE scores in minutes on all EVSEs in the test set for the CNN-LSTM and
CNN-GRU models with varying depth and breadth. Only hours with a status change.

Architecture Breadth 1 layer 2 layers

CNN-LSTM
32 nodes 15.170 13.567
64 nodes 15.674 15.132
128 nodes 12.979 20.879

CNN-GRU
32 nodes 12.638 15.409
64 nodes 15.704 14.492
128 nodes 14.767 16.415
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4.3 Discussion

In this section, we further evaluate our experimental results and interpret them
in relation to existing work. Finally, drawbacks of the current approach are given
and suggestions are made for further research.

The results show little difference in the RMSEs of CNN-LSTM and CNN-
GRU, which contrasts the little existing literature comparing these methods,
based on which an improvement of CNN-GRU over CNN-LSTM was to be ex-
pected [10, 28]. As stated before, few studies have been performed comparing
the CNN-LSTM and CNN-GRU architectures. Nonetheless, the performances of
LSTM and GRU have been studied extensively in the last years, often showing
little variation in prediction performance [12, 24, 34]. However, some literature
shows GRU to have a slightly higher performance than LSTM [27, 33]. More re-
search is needed to further establish in which cases one architecture is preferred
over the other, both when comparing CNN-LSTM with CNN-GRU and LSTM
with GRU.

Notwithstanding the promising results presented in this paper, there were
certain drawbacks to the methodology used. One drawback is the scope of the
periods used. The gross majority of the dataset falling during times of Covid-19
raises the question of the appropriateness of the trained models in the absence
of a pandemic. As the pandemic caused many to work from home and reduce
their movement, we can be confident that the charging behaviour was affected.
Not being able to train on much data without this abnormal behaviour, the gen-
eralisation ability of the trained models on post-Covid periods remains unclear.
However, it should be noted that the aim of this study is mostly to find which
architecture is able to capture the temporal dependencies present in EVSE fore-
casting, not to produce a single end-all model. The insights from this paper re-
main important to take into account when training a model using post-pandemic
data.

This work has focused solely on deep learning-based approaches. Section 2
gives an overview of other possible methodologies, some of which do not re-
quire using deep learning. A further approach that satisfies the requirement of
generalisation to different EVSEs could be a more classical model, such as the au-
toregressive integrated moving average (ARIMA) model [3]. A drawback of such
a general ARIMA model is that there could be a presence of different clusters of
EVSEs. The methods employed in this study are able to recognise the charging
behaviour of an EVSE as belonging to such a cluster and change its prediction
strategy accordingly. However, ARIMA models would require the clustering of
EVSEs, defining separate models for each cluster.

The possibility of time series clustering being required hinders the feasibility
of a general ARIMA model, as time series clustering is a research field separate
from time series prediction that comes with its own set of intricacies. An advan-
tage of using a (set of) general ARIMA model(s) is that the reasons for a model
to predict a certain availability are much more transparent.

In this study, little attention has been given to multistep forecasting. The
deep learning-based models have been trained to predict one hour ahead. As
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the only features additional to past outcome values are time-related, predicted
outcomes can be used to predict further than one hour ahead. However, no assess-
ment of the prediction performance more than one hour ahead has been made.
Further research could expand upon the current work by testing the amount of
periods the models can produce accurate forecasts for. Additionally, the hyper-
parameter search space could be extended to models with fewer nodes in each
layer. As the best performing models were the models with the fewest nodes,
further performance gains could be obtained by further simplifying the models,
for example by only allowing 16 nodes per layer.

5 Conclusion

In this paper, we investigated the suitability of state-of-the-art deep learning
methods for the task of predicting electric vehicle supply equipment availability.
We formulated our research question as follows: How do convolutional long short-
term memory and convolutional gated recurrent units perform when forecasting
electric vehicle supply equipment? Our experiments showed that the CNN-LSTM
typically had a lower RMSE than CNN-GRU, though their results were often
similar. We can conclude that CNN-LSTM and CNN-GRU are close to each other
in terms of performance when forecasting electric vehicle supply equipment,
though CNN-LSTM was often able to slightly outperform CNN-GRU.

Going back to the main goal of this work, to find an accurate methodology
for forecasting EVSE availability, the use of advanced (deep learning) methods
has been shown to achieve this goal. In particular, we have demonstrated the
ability of these methods to significantly outperform a simple, but strong, base-
line. Being able to accurately predict EVSE availability will allow providers to
take appropriate measures and facilitate the charging of electric vehicles. This,
in turn, should lead to a further increase in the uptake of electric driving.
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