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Introduction Detecting mentions of entities in text is a crucial component when
solving the task of information extraction. An effective Mention Detection (MD)
module is essential for downstream tasks such as named entity recognition [11,13],
entity linking [14,1], and relation extraction [3,17]

Recent results on the use of neural networks trained via supervised learn-
ing show that the task can be solved successfully, provided enough labeled
data [11,15,13]. However, obtaining such data often entails the use of costly
domain expertise and a lengthy annotation process.

An alternative that addresses this issue is distant supervision, which en-
compasses a broad range of methods that in general, create labeled datasets
automatically rather than through human annotators [9,5,16,8,10,4]. While dis-
tant supervision greatly reduces the cost of generating training data, additional
noise is incorporated into the data, for example, in the form of false negatives
(mentions of entities that are missed by the automatic annotation procedure,
and are labeled as negatives).

SlotGAN Towards methods that reduce annotation costs, and also avoid train-
ing with false negatives, we propose SlotGAN: a method based on Generative
Adversarial Networks (GANs, [2]) that only requires unlabeled text, and a list
of entity names for training (also known as an gazetteer). SlotGAN consists of a
generator network G that takes as input a sentence, and outputs a set of spans
containing words that it deems as named entities. Furthermore, a discriminator
D is in charge of determining whether a span of words comes from G, or from
the gazetteer (see Fig. 1).

There are a number of challenges arising in SlotGAN that are usually not
present in application of GANs. First, the spans extracted by the generator are
⋆ This work was presented at the ACL 2022 Workshop on Structured Prediction for

NLP, available at http://dx.doi.org/10.18653/v1/2022.spnlp-1.4.

http://dx.doi.org/10.18653/v1/2022.spnlp-1.4


2 D. Daza et al.

The Nobel Committee in Norway

Sweden

emb

emb pad

Gazetteer

Fig. 1. SlotGAN consists of a generator G that extracts spans from an input sentence,
and a discriminator D that determines if a span was generated from G or from a
gazetteer.

Table 1. Mention detection results evaluated via exact match precision (P), recall (R),
and F1 score; and overlap metrics (preceded with O). The “Data” column indicates what
is required to train the model in addition to a corpus.

Method Data P R F1 OP OR OF1

String matching Gazetteer 76.2 54.0 63.2 57.4 61.3 58.6
ACE [13] Gold labels 96.0 97.1 96.5 98.3 98.1 98.1
AutoNER [10] Type dictionary 88.4 94.2 91.2 97.4 97.2 96.9
Unsupervised [7] Domain concepts 80.0 72.0 76.0 — — —

SlotGAN - no pretraining Gazetteer 55.9 66.1 60.6 82.9 79.5 82.9
SlotGAN - pretrained 60.1 71.1 65.2 93.2 83.0 84.7

discrete selections of words at the input, whose count is not known in advance.
We design a mechanism based on Slot Attention [6] to group input words into
distinct slots that represent a span. The second challenge is that of generating
valid spans, which can also be empty if the input sentence does not contain
any mentions. To address this, we randomly zero out spans from the gazetteer
before passing them to the discriminator, and modify the training objective with
a constraint that penalizes spans that are not contiguous.

Experimental results We evaluate the model on the CoNLL dataset for named
entity recognition [12], and compare it with a string matching baseline, and su-
pervised, distantly supervised, and unsupervised methods. Results are shown in
Table 1. The overlap metrics show that when SlotGAN predicts a span, it over-
laps well with gold labels. However, it does not perform well when evaluating
exact boundary match. Furthermore, we observe that SlotGAN tends to generate
more spans than actually present in the input sentence. This indicates that an
additionaly filtering mechanism is likely to improve performance. Directions of
future work include an error analysis of the architecture in the fully-supervised
setting, and its applications as an end-to-end differentiable architecture for learn-
ing to extract spans for information extraction.
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