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Abstract. Machine learning has seen an increase in negative publicity
in recent years, due to biased, unfair, and uninterpretable models. There
is a rising interest in making machine learning models more fair for un-
privileged communities, such as women or people of color. Metrics are
needed to evaluate the fairness of a model. A novel metric for evalu-
ating fairness between groups is Burden, which uses counterfactuals to
approximate the average distance of negatively classified individuals in
a group to the decision boundary of the model. The goal of this study
is to compare Burden to statistical parity, a well-known fairness met-
ric, and discover Burden’s advantages and disadvantages. We do this
by calculating the Burden and statistical parity of a sensitive attribute
in three datasets: two synthetic datasets are created to display differ-
ences between the two metrics, and one real-world dataset is used. We
show that Burden can show unfairness where statistical parity can not,
and that the two metrics can even disagree on which group is treated
unfairly. We conclude that Burden is a valuable metric, but does not
replace statistical parity: it rather is valuable to use both.

Keywords: Fairness metrics · Burden · Statistical parity · Decision
boundary · Sensitive attributes · Unprivileged groups · Classification

1 Introduction

Automated decision making has been used in many real-world applications, e.g.
loan applications and predicting recidivism of criminals [13,17]. However, many
of these algorithms are black boxes, and their decision processes are not trans-
parent to humans. This is undesirable since it could lead to the unfair treatment
of certain groups, without being able to provide an explanation [1]. This has led
to an increased demand of fair and explainable models, with many new frame-
works for providing explanations being proposed [8–10], as well as new metrics
to measure the fairness of a model [6, 7, 15].

Metrics for fair machine learning measure how well a particular model is to-
wards different groups within a dataset. Although the definition and practical
implementation of fairness varies between different metrics, their overarching
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goal is to provide insight into the level of fairness between different groups re-
garding sensitive attributes (e.g. age, gender, socioeconomic status).

One of the new frameworks is CERTIFAI [12], a framework that tests the
robustness of a model, as well as providing explanations and a metric to measure
fairness. This framework is implemented commercially by the company Cogni-
tiveScale, and used by many organizations in different domains.

It does so by generating counterfactuals1 for each datapoint in the dataset.
This counterfactual is a synthetic datapoint, generated to have the other possible
outcome, while being as close as possible to the original datapoint [14]. The coun-
terfactuals provide insight into what features should change to have the model
classify the datapoint differently. Not only does this provide an explanation for
why a certain classification was made, this also allows us to measure the – pos-
sibly unfair – difference in treatment for certain groups (e.g. male and female).
By calculating the average distance for a group between original datapoints in
the negative outcome class (e.g. loan application denied) and their generated
counterfactuals (e.g. loan application approved), the Burden of a group can be
calculated. These Burden scores can be compared to see which groups have a
higher Burden and thus have more difficulty converting from the negative to the
positive predicted outcome class. In this way we do not only calculate if a group
is being disadvantaged, but also how much a group is disadvantaged. This can
give more detailed insight into the fairness of the model.

Sharma, Henderson, and Ghosh [12] claim that “Burden can be considered to
be a nuanced version of other fairness measures (such as demographic parity)”
[12, p. 170]. It is calculated by measuring the ratio of the probability of receiving
a positive outcome from a model between groups (See Sec. 2.1). However, this
claim of nuance is not validated in their study. In this study, the claim is tested,
by comparing the Burden metric to statistical parity (SP). We focus on SP
because it, like Burden, does not take the actual ground truth target value into
account but rather the model’s prediction. It therefore makes sense to compare
the two.

In this study, we investigate situations where both metrics give different
results to see if Burden can provide more nuance and if it is a good fairness
metric in practice. This is tested on two synthetic datasets with hypothetical
data and a real-world loan application dataset [16]. All three datasets have a
binary outcome class: a favorable outcome and an unfavorable outcome. This
means that the models used are also binary classification models.

2 Related Work

In this section, the fairness metrics SP (Sec. 2.1) and Burden (Sec. 2.2) are
explained more in-depth to get a better theoretical understanding of how and
why they work as fairness metrics.

1 The term counterfactual in this context does not refer to the type of counterfactual
discussed in literature on causality.
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2.1 Statistical Parity

There are many metrics to measure how fair a model is, and there is no agree-
ment on a best method, or even on the definition of fairness itself [2]. However,
one of the most common and easy to implement fairness metrics is that of SP,
or demographic parity [7]. In order to calculate SP, we have to calculate the
acceptance rate (AR) for a specific group of a feature S = s. For example, if S
is a binary value the groups could be 0 and 1, which can be seen in Eq. 1.

ARS=s = P (Ŷ = 1|S = s) (1)

This means that the acceptance rate of the group where S = s is defined as the
probability (P ) of the model predicting a positive outcome (Ŷ = 1), given that
S = s.2 To calculate the SP between two groups of a binary feature S, we look
at the ratio of the acceptance rate of both groups, as seen in Eq. 2.

SPS =
ARS=0

ARS=1
=

P (Ŷ = 1|S = 0)

P (Ŷ = 1|S = 1)
(2)

If the same percentage of individuals receives a positive score for each group, and
thus the outcome of the ratio is 1, the two groups both have the same probability
of receiving a positive outcome prediction from the model. This is seen as fair:
if S is a sensitive attribute, e.g. age, there should be no difference in receiving a
positive prediction. Perfect SP is almost never possible in practice, so often the
80% rule for disparate impact [5] is used: there is disparate impact if SP ≤ 0.8.

2.2 Burden

The CERTIFAI framework [12] uses counterfactuals to measure different treat-
ment of groups. A counterfactual, in this context, is a datapoint calculated to be
as similar to an original datapoint as possible, while receiving a different classifi-
cation. A counterfactual datapoint can provide an individual with recourse: the
counterfactual datapoint can show the individual which changes to the input fea-
tures are can be made to change the classification to the desired output class. To
this end, counterfactuals are also constrained to be realistically achievable. It is,
for example, not useful to find a counterfactual with different gender, since this
is not something one will realistically change to achieve a different classification.

Sharma et al. [12] propose a genetic heuristic search for generating a coun-
terfactual c for a datapoint x. The process is shown visually in Fig. 1. Starting
from a randomly initialised population of size N , the counterfactuals c that are
classified in the opposing class are selected. These are then mutated with proba-
bility Pm, which involves arbitrarily changing some feature values. Subsequently,
crossover is applied with probability Pc, which involves randomly interchanging
some feature values between individuals. Then, a top-k selection procedure is

2 The actual ground truth outcome, or target value, of a supervised dataset is denoted
as Y , while the model’s predicted outcome is denoted as Ŷ .
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applied where only the most fit counterfactuals are selected. The fitness func-
tion 1/d(x,c) is the inverse of a distance function calculated over a datapoint and
its counterfactual. The population is then filled back up to N by randomly gen-
erating new counterfactual points. This process is repeated for a predetermined
maximum of generations. Finally, the fittest counterfactual c∗ is selected for each
datapoint.

Using c∗, the Burden of a group can be calculated. The Burden of a group
with value s for feature S is calculated over the instances with value s = S that
are classified in the unfavorable class. Burden is then defined as the mean of the
distances between these datapoints and their counterfactuals,

BurdenS=s = ES=s[d(x, c
∗)], (3)

where the distance function can be chosen and corresponds to the distance func-
tion in the fitness calculation. Equation 3 corresponds to equation 11 in [12].
Similarly to SP, we can use the ratio of two Burden scores for a binary sensitive
feature.

Fig. 1: Visual representation of the counterfactual generation process of CERTI-
FAI. Adopted from [12].

3 Methods

The methodology is broken down in four parts: the creation of the two synthetic
datasets, the description of the ‘Default of Credit Card Clients’ dataset, the clas-
sifier models and lastly CERTIFAI’s counterfactuals and Burden. The Python
code (using Jupyter Notebook), saved models, and generated data is available
on GitHub3.

3.1 Synthetic Datasets

We created two datasets to demonstrate two types of disagreements between
Burden and SP that are theoretically possible. One synthetic dataset, DA, shows

3 https://github.com/yochem/bursting-the-burden-bubble

https://github.com/yochem/bursting-the-burden-bubble
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that Burden disagrees with SP about whether there is unfairness, and the other
dataset, DB , shows that Burden disagrees with SP about which group is treated
unfairly. Both synthetic datasets consist of 80 datapoints.

Each datapoint in the two datasets consists of three features and a label.
The legitimate (non-sensitive and non-proxying)4 features X1 and X2, the sen-
sitive attribute S (0 is unprivileged, 1 is privileged), and the target label Y
(0 is unfavorable, 1 is favorable). This means that datapoint i is given by
D(i) = (x1, x2, s, y). The legitimate features X1 and X2 are mixtures of Gaus-

sians around multiple means µ. For example, X
(i)
1 ∼ N (µ

(i)
1 , σ) means that the

feature X1 from point i is sampled from a normal distribution with mean µ
(i)
1 .

The different µ-values, along with the values of the other features, are listed in
Table 1. All samples have a standard deviation σ of 1. The sensitive attribute S
is selected (not sampled from a random distribution), as is the target label Y .
The true underlying function between the legitimate features and the outcome
can be derived from Table 1. The datapoints of the two datasets are plotted in
Fig. 2.

Dataset on Presence of Unfairness DA Burden takes the average distance
of a group to their counterfactuals into account, while SP does not. Therefore,
the synthetic data needs to satisfy two properties: Firstly, it needs to satisfy SP,
so for each group, the same number of datapoints needs to be predicted positive.
Secondly, the average distance of the negatively predicted datapoints to their
counterfactuals needs to differ between the two groups to show how Burden can
find this unfairness.

Dataset on Direction of Unfairness DB This dataset should let Burden
and SP disagree on which group is treated unfairly. This means that SP has to
label one group of the sensitive attribute as unprivileged, and Burden has to
label the other group as unprivileged. SP labels a group as unprivileged if the
group has fewer positively predicted outcomes than the other group (P (Ŷ =
1|S = 0) ̸= P (Ŷ = 1|S = 1)). With a perfect classifier (accuracy of 1), we have
Ŷ = Y . Using the definition of SP, an unprivileged group can be formed by
having relatively fewer datapoints where Ŷ = 1. For Burden to disagree with
SP, the other S-group (i.e. the group that SP sees as privileged) needs to have a
greater distance to their counterfactuals at the decision boundary, as illustrated
in Fig. 1.

3.2 Default of Credit Card Clients Dataset

To explore the claim of Burden being more nuanced, the metric is also com-
pared to SP on real-world data. This is done on a subset of the Default of Credit

4 A proxying feature can reveal sensitive information. E.g. someone’s address, although
not a sensitive feature, can reveal someone’s socioeconomic status because of their
neighborhood.
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Table 1: The distribution of values per feature for both datasets DA and DB .
The count is the number of datapoints sampled from the normal distributions
for X1, and X2, with shown mean µ for their normal distribution N (µ, 1).

Dataset DA Dataset DB

µX1 µX2 S Y count µX1 µX2 S Y count

1 9 0 0 20 1 9 1 0 15
3.5 5 1 0 20 3.5 5 0 0 15
9 1 0 1 20 9 1 1 1 30
9 1 1 1 20 9 1 0 1 20

Card Clients dataset, also known as the Taiwan loan dataset, from [16] (from
now on called Taiwan dataset). This is a dataset of credit card users, which
records whether the individual defaults on a loan. Since defaulting on a loan is
a negative outcome, the favorable label in this dataset is 0: ‘did not default’.
The unfavorable label is 1: ‘default’. The sensitive attributes are gender, edu-
cation, marriage, and age [3]. These are not used as training input data. After
training, we use the sensitive attribute gender for testing the fairness of the
model. Monthly payments were tracked for the other features, such as history
of past payment, amount of bill statement, amount of previous payment, and
amount of given credit. Datapoints with values not following the specification5

were removed. The dataset contains 30,000 instances. The computational cost
for generating counterfactuals is large because the genetic algorithm iteratively
goes over large population sizes for many generations. Therefore, this study is
limited to a random sample of 1000 instances from the Taiwan dataset.

3.3 Classifier

A binary classification model (classifier) is needed for calculating Burden, and
SP. On all three datasets, a Logistic Regression model [4] was trained. The Logis-
tic Regression model was chosen because of its simplicity and the interpretability
of its linear decision boundary.

The classifiers were trained on the datasets without their sensitive features.
No hyper-parameter optimization was performed, and the datasets were not
partitioned into separate tests for training, and evaluation. This was done to re-
move unnecessary complexity: our interest lies in evaluating fairness, not model
performance. The Logistic Regression model was implemented in PyTorch for
reasons concerning compatibility with the CERTIFAI framework. It used the
binary cross-entropy loss function [4] and the stochastic gradient descent opti-
mizer [11]. The learning rate was 0.001 and the number of iterations was 2000.
The number of input dimensions for each classifier was the number of legitimate

5 An example: gender is encoded as either 1 or 2; some datapoints had a value of 3 in
the column of gender. Since this value is not described in the dataset specification,
the datapoints where gender does not equal 1 or 2 were removed.
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features, i.e.X1 andX2 for the synthetic datasets, and 19 features for the Taiwan
dataset relating to past payments, bill statements, and credit features.

3.4 CERTIFAI’s Burden

Using the CERTIFAI.fit() method, counterfactuals were generated given the
model. The hyperparameters were the following: 10 generations of populations
with size 60,000, of which at most 10,000 are retained after selection, of which
at most 5,000 are retained for the next generation, and unconstrained generat-
ing of counterfactual features. The probabilities for crossover and mutation were
adopted from [12]. For calculating the Burden, CERTIFAI’s check fairness

method was used with as argument a mapping containing 1) the sensitive at-
tribute and its value (e.g. s: 0), and 2) that it should be calculated over the
unfavorable class (i.e. favorable: 0).

4 Results
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(a) DA, where Burden and SP disagree on
the presence of unfairness.

2 0 2 4 6 8 10 12
x1

2

0

2

4

6

8

10

12

x 2

Favorable (+)

Unfavorable (-) Counterfactual
s = 1
s = 0
decision boundary

(b) DB , where Burden and SP disagree on
the direction of unfairness.

Fig. 2: The synthetic datapoints (▼,■) for datasets DA and DB . The counter-
factuals (×) for datapoints from the unfavorable outcome class are also included
and are connected using a dotted line. The decision boundary (---) of the clas-
sifier is also shown. Note that the distribution of the positive class does not
influence Burden.

In the first two experiments, logistic regression models were trained on DA

and DB respectively and both got an accuracy of 1.00. In Fig. 2, this is shown by
the decision boundaries laying perfectly between both groups. After the models
were trained, the counterfactuals for the unfavorable class were generated by
CERTIFAI, also shown in Fig. 2. After this, the SP and Burden were calculated.
The results of the metrics on both experiments are listed in Table 2.
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For the experiment on DA we see that SP is met: the ratio of the acceptance
rates of the groups is 1. The Burden of group S = 0 is higher (Burden of
11.6) than of group S = 1 (Burden of 4.65). This difference in Burden can also
be eyeballed using Fig. 2a, where the S = 0 group is further away from their
counterfactuals than the S = 1 group.

For the experiment on DB we see that SP is 0.857. The Burden of the two
groups are 3.31 and 11.0 for S = 0 and S = 1, respectively. The datapoints are
plotted in Fig. 2b.

The results of the last experiment, on the Taiwan dataset, are also listed in
Table 2. The model trained on this dataset achieved an accuracy of 0.78. The
results are the following: SP is nearly met, with a value of 1.02 (0.967 over 0.948).
Burden however shows that females have almost 1.5 times higher Burden than
males, respectively 1.38 and 0.940.

Table 2: SP and Burden for the three datasets. The acceptance rate and Burden
are given per group (S = 0 and S = 1 for the synthetic datasets correspond to
gender=female and gender=male respectively for the Taiwan dataset), as well
as the Burden ratio and statistical parity (SP) between the two groups, in bold.

Acceptance Rate SP Burden

Dataset S = 0 S = 1 0/1 S = 0 S = 1 0/1

DA 0.500 0.500 1.00 11.6 4.65 2.49
DB 0.571 0.667 0.857 3.31 11.0 0.302
Taiwan 0.967 0.948 1.02 1.38 0.940 1.47

5 Discussion

In this section, the results are discussed as well as the limitations of this study
and directions for future work.

5.1 Discussion on Experimental Results

In the first experiment with dataset DA, the results show that even though SP
was met (ratio of 1.00), Burden shows that the model is unfair towards group
S = 0, since their Burden is higher. This means that Burden can show unfairness
between groups when SP can not. This is a positive result for the claim of Sharma
et al. [12] that Burden provides more nuance than SP in this situation. The
distance to the counterfactuals near the decision boundary is important here to
actually find the unfairness.

In the second experiment on dataset DB , the SP shows unfairness towards
group S = 0 since SP is less than 1. Burden however tells us that group S = 1 is
being treated unfairly, because the Burden of this group (11.0) is higher than the
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Burden of the other group (3.31). This means that SP and Burden can disagree
on which group is treated unfairly.

As a third experiment, on real-world Taiwan data, the results show the same
effect as the first experiment. Although the difference is smaller than with DA,
the results show that with SP the model is more fair than with Burden. Burden
can thus add nuance compared to SP in this situation.

5.2 Limitations and Future Work

Future work could look for real-world examples of the synthetic dataset DB , and
if the disagreement between Burden and SP found in our synthetic experiment
occurs in other situations.

Furthermore, it is important to note that the computational complexity of
the Burden metric is extremely high in comparison to a metric like SP. While SP
is a simple calculation of a ratio between two percentages, the calculation of a
single counterfactual for the Burden metric can take minutes. For large datasets
it might thus be necessary to compute this metric for a representative sample of
the dataset.

A limitation of the experiment performed on the Taiwan dataset is that it is
hard to verify the quality of the counterfactuals. The complexity of the decision
boundary and the dimensionality of the data hinders the visualization of the
counterfactuals. Any found difference in Burden on this dataset might thus be
a measurement error. Another limitation is that the experiment was performed
on a small part of the data, as the calculation of 30000 counterfactuals takes a
very large amount of resources.

6 Conclusion

In this study we assessed the fairness metric introduced in Sharma et al. [12],
using three experiments. The first experiment, using synthetic datasetDA, shows
that Burden can pick up unfairness when SP can not. The second experiment,
using synthetic dataset DB , shows that Burden and SP can even disagree on
which group is treated unfairly. The last experiment, using the Taiwan dataset,
shows that Burden is more nuanced than SP on a real-world dataset. The three
experiments show that Burden has the ability to provide more information than
SP, but this information may not be in line with SP.

We conclude that Burden and SP can be complementary, as both metrics
measure different, important aspects of model fairness. However, due to the com-
putational complexity of the evolutionary algorithm, Burden’s use of recourse
might not outweigh the speed of SP for all models. For simple models, where
the decision boundary can be easily computed, a genetic algorithm might be
unnecessarily complicated. We agree with Sharma et al. [12] that Burden can
provide more nuance than SP, but the increase in nuance might not always be
worth the computational cost.
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