
Semiconductor Demand Forecasting using Long
Short-term Cognitive Networks

Isel Grau1,2, Michiel de Hoop1, Ana Glaser3, Gonzalo Nápoles4, and Remco
Dijkman1,2

1 Information Systems Group, Eindhoven University of Technology, The Netherlands
2 Eindhoven Artificial Intelligence Systems Institute,
Eindhoven University of Technology, The Netherlands

3 Supply Chain Systems & Processes, NXP Semiconductors, The Netherlands
4 Department of Cognitive Science & Artificial Intelligence, Tilburg University,

The Netherlands
i.d.c.grau.garcia@tue.nl

Abstract. Demand forecasting plays a paramount role in effective sup-
ply chain management, giving a business the opportunity to optimize
production and improve stock management and operation. Statistical
techniques are widely and fittingly used in these prediction problems,
however, recent advancements in machine learning techniques are worth
exploring. In this paper, we use Long Short-term Cognitive Networks
(LSTCN) for forecasting multivariate time-series data describing the de-
mand for six different types of products of a semiconductor company.
The results of the experiments show that LSTCN is able to outperform
state-of-the-art techniques for three out of the six tested datasets. The
results also show that LSTCN is able to leverage the inclusion of addi-
tional data and more accurately forecast peaks and valleys in demand.
These results and the interpretability potential of LSTCN led to the in-
tegration of this algorithm into the suite of forecasting models available
in the company’s forecasting system.

Keywords: semiconductor demand · forecasting · long short-term cog-
nitive networks · recurrent neural networks · multivariate time series

1 Introduction

In the last decades, companies have invested heavily in digitizing their historical
data and processes. However, digitization should not be limited to archiving and
transferring data in static information systems. The digital transformation of a
company has the potential to change business models and business processes to
create more efficiency, more value, or even new services [4]. In particular, there is
still a lot of room for leveraging historical data to support the decision-making
processes. For example, data analytics and forecasting can help businesses to
better anticipate the demand and sales of their products, impacting their policies
and plans. Accurately predicting the demand can help businesses to reduce costs,



2 I. Grau et al.

reduce product cycle times, and optimize inventory management, giving them a
competitive advantage [6].

Forecasting demand represented as time series data has been widely explored
in the literature using several statistical approaches [18]. Some examples of suc-
cessful applications include the use of the exponential smoothing method for
predicting the short-term, mid-term, and long-term demand trends in the sup-
ply chain of the chemical industry [2], the demand for perishable products in
food retails with Holt-Winters and autoregressive integrated moving average
(ARIMA) models [3], and the consumer interest on a product based on web
search traffic using ARIMA [5]. Among these techniques, ARIMA usually out-
performs the rest in terms of precision and accuracy [14]. However, the demand
for products is caused by several factors which are often too complex to describe
by linear models based on univariate data.

More complex machine learning models such as neural networks offer an al-
ternative for multivariate, highly non-linear data. For example, Silva et al. [15]
predict the demand for consumer products in supermarkets using multilayer neu-
ral networks and support vector regression methods. Recurrent neural networks
(RNN) such as the long-short term memory (LSTM) architecture or bidirectional
RNN have also proven useful in demand forecasting [17] by capturing long-term
dependencies in the time sequence through their feedback loops. Alternatively,
tree-based regression models such as random forest (RF) and extra trees (ET)
have shown significant performance, especially considering their potential for
interpretability in the form of feature importance compared to deep learning
models [1, 13]. The hybridization of neural networks with traditional statistical
techniques is also a promising direction [16]. However, the use of RNN archi-
tectures is limited in practice due to their high computational complexity, their
need for a large amount of data to learn accurate models, and their training
time, which can increment financial and environmental costs [7, 8].

To mitigate the shortcomings of RNN, Long Short-term Cognitive Networks
(LSTCNs) [10] were proposed as a computationally efficient and transparent
alternative for forecasting multivariate time series. LSTCN is able to outper-
form state-of-the-art RNNs in terms of accuracy and training time for several
case studies with multivariate time series. In this paper, we investigate whether
LSTCN is a good candidate algorithm for solving the forecasting tasks of the
semiconductor company NXP. The semiconductor company NXP is a major
semiconductor designer and manufacturer headquartered in Eindhoven, Nether-
lands. NXP uses an ensemble of 52 statistical and machine learning models to
generate forecasts for mass market customers served via their distribution chan-
nels. The forecasting team at NXP trains these models every month and selects
the best-performing one for short-term and long-term predictions. Therefore,
improving their predictions by integrating other efficient machine learning tech-
niques into its ensemble of forecasting models is of great interest. This company
estimates that for every 10% improvement in forecast accuracy, they obtain a
cost reduction of 1 day of total inventory on hand and 15% in annual carrying



Semiconductor Demand Forecasting using LSTCN 3

costs. Therefore, improved forecast accuracy results in significant cost savings
and downstream benefits for the planning and strategy organization.

In our experiments, we use LSTCN for forecasting multivariate time-series
data describing the demand for six different families of products. The results of
the experiments show that LSTCN is able to outperform state-of-the-art tech-
niques for three out of the six tested datasets. Furthermore, LSTCN outperforms
NXP’s current ensemble of models in one dataset. The results also show that
LSTCN is able to leverage the inclusion of additional data about successful de-
sign opportunities and more accurately forecast peaks and valleys in demand.
These results and the potential of LSTCN for interpretability and knowledge
injection led to the integration of this algorithm into the suite of forecasting
models available in the company’s forecasting system.

The rest of this paper is organized as follows. Section 2 presents the theo-
retical aspects of the LSTCN method, including its construction and training
processes. Section 3 presents the case study of NXP demand forecasting and com-
pares the performance of LSTCN with other state-of-the-art techniques. Section
4 discusses the results and concludes the paper.

2 Long Short-term Cognitive Networks

Before introducing the LSTCN model, let us formalize the forecasting prob-
lem to be addressed. A multivariate time series can be defined as a sequence
{X(t)}Tt=1 = {X(1), X(2), . . . , X(T )} of vectors of M continuous variables, such

that X(t) = [x
(t)
1 , x

(t)
2 , . . . , x

(t)
M ] and t ∈ {1, 2, . . . , T} where T ∈ N is the num-

ber of observations. The forecasting problem consists of predicting the following
L < T steps ahead, from the known observations.

2.1 Obtaining the time patches

The LSTCN model operates on time patches, which can be defined as temporal
pieces of data resulting from partitioning the time series. Let us assume that
X ∈ RM×T is a dataset comprising a multivariate time series. Such time patches
can be disjoint or overlapped. Next, we briefly explain how to obtain disjoint
time patches given a multivariate time series.

– First, we encode the multivariate time series X as a set of Q tuples with the
form (X(t−L), X(t+L)), such that t − L > 0, t + L ≤ T . This suggests that
the LSTCN model will be symmetric, meaning that it will use the last L
observations to predict the next L values.

– Secondly, each component in the tuple is flattened as a Q × (M(L + L))
matrix from which we create a partition P = {P (1), . . . , P (k), . . . , P (K)} of

time patches such that P (k) = (P
(k)
1 , P

(k)
2 ) is the k-th time patch involving

two data pieces P
(k)
1 , P

(k)
2 ∈ RC×(M×L) where C is the number of instances

in a given time patch. It should be mentioned that we can trim the sequence
by removing the earliest observations to ensure that the length and time
patches to be created are compatible.



4 I. Grau et al.

2.2 Construction and reasoning

An LSTCN model [10] can be defined as a recurrent neural network composed
of a collection of STCN blocks that allow for sequential learning. In other words,
each STCN block is a two-layer neural network that implements shallow learning
to process a specific time patch. Which is more important, each block passes the
knowledge learned in the previous iteration to the previous STCN model as prior
knowledge defined by a weight matrix.

The STCN block was first introduced in [12] and later expanded in [11]. This
neural computation system involves two primary processing gates: the input gate

and the output gate. The input gate operates the prior knowledge matrix W
(k)
1 ∈

RN×N with P
(k)
1 ∈ RC×N and the prior bias matrix B

(k)
1 ∈ R1×N such that

N = (M × L). Both matrices W
(k)
1 and B

(k)
1 are transferred from the previous

block and remain locked during the learning phase to be performed in that STCN
block [9]. The result of the input gate is a temporal state H(k) ∈ RC×N with

the outcome that the block would have produced for P
(k)
1 if no further learning

process would have been performed to obtain P
(k)
2 . Such an adaptation is done in

the output gate where the temporal state is operated with the learnable weight

matrices W
(k)
2 ∈ RN×N and B

(k)
2 ∈ R1×N . Equations (1) and (2) display the

reasoning process of this model in the k-th iteration,

P̂2
(k)

= f
(
H(k)W

(k)
2 ⊕B

(k)
2

)
(1)

and
H(k) = f

(
P

(k)
1 W

(k)
1 ⊕B

(k)
1

)
(2)

such that

f(x) =
1

1 + e−x
(3)

where P̂2
(k)

is the predicted output, while ⊕ performs a matrix-vector addition
by operating each row of a given matrix with a vector. Of course, these matrices
should have the same number of columns. Moreover, for the sake of simplicity,
we assume that outputs should be in the [0, 1] interval.

Now, we are in a position to introduce the LSTCN architecture, which con-
sists of a sequence of STCN blocks, each processing a time patch and passing
the learned weights to the following block as prior knowledge. Figure 1 portrays
this idea for a time series involving three time patches.

In this model, we use an aggregation operator to merge the knowledge char-
acterizing the current STCN block when building the prior knowledge matrix.
This research will study the aggregation operators formalized below to produce
the knowledge to be transferred to the next block.

– Linear. This operator transfers the learned weights in the current block to
the next one without further modification.

W
(k)
1 = W

(k−1)
2 , k − 1 ≥ 0



Semiconductor Demand Forecasting using LSTCN 5

�𝑃𝑃2
(2)

𝑊𝑊1
(1),𝐵𝐵1

(1) 𝑊𝑊1
(2),𝐵𝐵1

(2)

𝑊𝑊2
(1),𝐵𝐵2

(1) 𝑊𝑊2
(2),𝐵𝐵2

(2)

STCN STCN

𝑃𝑃1(0) 𝑃𝑃1(1) 𝑃𝑃1(2)

𝑊𝑊1
(0),𝐵𝐵1

(0)

𝑊𝑊2
(0),𝐵𝐵2

(0)

STCN

�𝑃𝑃2
(0) �𝑃𝑃2

(1)

Ψ Ψ

Fig. 1: LSTCN model with three STCN blocks. The weights learned in the cur-
rent block are transferred to the following as a prior knowledge matrix.

B
(k)
1 = B

(k−1)
2 , k − 1 ≥ 0

– Nonlinear. This operator applies a nonlinear transformation to W
(k−1)
2 and

B
(k−1)
2 before passing them to the next block.

W
(k)
1 = Ψ(W

(k−1)
2 ), k − 1 ≥ 0

B
(k)
1 = Ψ(B

(k−1)
2 ), k − 1 ≥ 0

– Average linear. This operator aggregates W
(k−1)
1 and W

(k−1)
2 , and B

(k−1)
1

and B
(k−1)
2 before passing them to the next block.

W
(k)
1 = W

(k−1)
1 +W

(k−1)
2 , k − 1 ≥ 0

B
(k)
1 = B

(k−1)
1 +B

(k−1)
2 , k − 1 ≥ 0

– Average nonlinear. This operator is similar to the previous one; however, it
applies a nonlinear transformation to the averaged matrices.

W
(k)
1 = Ψ(W

(k−1)
1 +W

(k−1)
2 ), k − 1 ≥ 0

B
(k)
1 = Ψ(B

(k−1)
1 +B

(k−1)
2 ), k − 1 ≥ 0

such that Ψ(x) = tanh(x) is the nonlinear aggregation function. The best oper-
ator will be decided through hyper-parameter tuning.

2.3 Shallow parameter learning

Similarly to other gated recurrent neural networks, the learning process used by
LSTCN models takes place inside each STCN block, even considering the frozen
weights input as prior knowledge.

Overall, the learning task can be summarized as follows. Given a temporal

stateH(k) resulting from the input gate and the block’s expected output P
(k)
2 , we



6 I. Grau et al.

need to compute the matrices W
(k)
2 ∈ RN×N and B

(k)
2 ∈ R1×N . These matrices

are estimated using shallow learning by solving a linear equation system that
adapts the temporal state to the expected output. Equation (4) displays the
deterministic learning rule solving this regression problem,[

W
(k)
2

B
(k)
2

]
=

((
Φ(k)

)⊤
Φ(k) + λΩ(k)

)−1 (
Φ(k)

)⊤
f−

(
P

(k)
2

)
(4)

where Φ(k) = (H(k)|A) such that AC×1 is a column vector filled with ones,
Ω(k) denotes the diagonal matrix of (Φ(k))⊤Φ(k), while λ ≥ 0 denotes the ridge
regularization penalty [10]. This deterministic learning rule assumes that the
neuron’s activation values inner layer are standardized. If needed, the predicted
values can be adjusted back into their original scale.

We need to specify W
(0)
1 and B

(0)
1 in the first STCN block. These matrices

can be obtained from a previous learning process, or they can be provided by
domain experts. Since this information is not available, we fit a single STCN

block without an intermediate state (i.e., H(0) = P
(0)
1 ) on a smoothed represen-

tation of the whole (available) time series. The smoothed time series is obtained
using the moving average method for a given window size.

3 Forecasting experiments

In this section, we will explore the performance of LSTCN in forecasting the de-
mand for six groups of products from the semiconductor company NXP. First,
we describe the characteristics of the datasets and the forecasting system cur-
rently used at the company. Next, we describe the experiments performed using
LSTCN, the comparison with other state-of-the-art techniques, and discuss the
results obtained.

3.1 Data description

For forecasting demand, the semiconductors company NXP divides its customers
into two channel groups named Distribution Mass Market (DMM) and Distribu-
tion Fulfillment (DF), based on the size and frequency of their orders. The DMM
channel contains the sales to customers that generally request relatively small
and more frequent orders, while the DF channel contains the sales to bigger
customers that request larger orders. Within these channel groups, two product
aggregation levels are relevant for this research, the Major Article Group (MAG)
and the 6TG levels. The 6TG level is the lowest level of aggregation besides the
individual products, and the MAG level is the highest level of aggregation. The
demand data is predicted at the 6TG level, i.e., a prediction is made for each
product group. Afterward, the results are aggregated, and the performance is
measured at the MAG level. The MAG level includes three article groups for
each channel, resulting in six independent forecasting datasets, which were se-
lected for this case study based on the availability of data. Table 1 summarizes



Semiconductor Demand Forecasting using LSTCN 7

the organization, the number of products, and the total requested orders (in
millions) for the datasets considered in the experiments.

Table 1: Characteristics of the datasets considered in the case study.
Channel Group MAG level 6TG level 6TG products Total Requested Orders

DMM
Group 1 Dataset 1 740 1152.86 M
Group 2 Dataset 2 270 1081.28 M
Group 3 Dataset 3 99 112.62 M

DF
Group 1 Dataset 4 368 619.29 M
Group 2 Dataset 5 166 439.15 M
Group 3 Dataset 6 59 108.37 M

The current forecasting system of the company is based on 52 models, includ-
ing techniques such as ARIMA, moving average, and extra trees regression. Each
month the models are trained on historical data and the best-performing ones
are used to predict the short-term demand for the next four months and long-
term demand for the months four to 18. The forecasting for the DF channel is
conducted manually, using expert knowledge within the company, based on cus-
tomer and sales information. The historical data comprises five time-distributed
variables making the prediction problem a multivariate forecasting task. The
number of requested orders (RO) is the target variable to be predicted and rep-
resents the demand of a given product group, at the 6TG level of aggregation, for
a given month. Other time-dependent variables considered are the sales informa-
tion from the distributors (POS), the inventory level of the distributors (DI), a
record of the estimated number of orders that would be requested in the future
18 months (FB), and a record of the design opportunities with an estimated
revenue from the distributors. For the last variable, when the estimated revenue
surpasses a given quantity, these design opportunities are considered design wins
(DW). However, DW data is not currently considered in the company’s forecast-
ing system. In the next section, we report the performance for each dataset,
when excluding and including the DW variable. Table 2 displays the mean and
standard deviation of each variable for the six datasets studied, negative values
are possible in this context. None of the series display seasonalities or trends,
although a considerable decrease in requested orders is observed during 2020 and
later recovered in 2021 due to the influence of the Covid19 pandemic.

3.2 Experiments and results

In order to measure the performance of LSTCN for the six datasets described be-
fore, we compute the volume weighted mean absolute percentage error (wMAPE).
This measure computes the mean absolute percentage error of the forecasting
for each 6TG product group of the dataset, and weights the result based on the
volume of orders with regard to the total orders of each 6TG product group (see
Table 1).



8 I. Grau et al.

Table 2: Mean and standard deviation of each variable for the six datasets stud-
ied.

RO POS DI FB DW

6TG level mean std mean std mean std mean std mean std

Dataset 1 10,472 61,994 2,819 28,433 7,769 121,930 45,577 176,181 6,247 14,516
Dataset 2 25,883 65,781 9,598 29,566 17,182 81,414 160,771 301,615 8,635 15,597
Dataset 3 15,354 41,274 4,158 15,530 13,929 81,557 60,946 136,109 5,142 10,178
Dataset 4 58,952 407,053 19,266 139,614 8,815 137,014 70,026 281,306 16,352 55,351
Dataset 5 61,817 218,275 25,171 87,684 19,175 109,648 104,416 315,045 10,554 18,798
Dataset 6 67,771 137,681 33,020 64,269 16,301 92,914 78,597 155,765 20,556 132,682

We compare LSTCN against linear regression (LR), a multivariate imple-
mentation of ARIMA (ARIMAX), extra trees regression (ET), and a vanilla
RNN. We also report the performance of the best of 52 models of the forecasting
system as provided by NXP. For the validation, we use a nested walk-forward
cross-validation with a grid search for optimizing hyperparameters. For the ARI-
MAX method, we varied the order of the autoregressive term (AR) between one
and 10 and the order of the moving average term (MA) between one and eight,
both with steps of one. For the ET regressor, we varied the number of trees be-
tween 50 and 100 with steps of 10, the maximum depth of the tree between two
and 10 with steps of one, the minimum number of samples required to split an
internal node between two and six with steps of one, and the minimum number of
samples for leaf nodes between two and eight with steps of one. The RNN model
was tested with learning rate values between 0.001 and 10 with steps power of
10, and it was trained using mean square error and mean absolute error as loss
functions. Finally, LSTCN considers three hyperparameters: the number of time
patches (see Figure 1) with values one, two, and three, the regularization penalty
with values between 0.0001 and 1.0, with intermediate steps 0.001, 0.01, 0.1 and
0 (see λ in Equation 4), and the aggregation operators linear, nonlinear, average
linear and average nonlinear (see Section 2.2). The best hyperparameters for
each model are reported in Table 3.

The wMAPE of the selected models and NXP forecasting system for all
dataset configurations are presented in Table 4. These results are based on the
walk-forward cross-validation with data from a period of six months. For each
dataset, the selected model that performed best compared to the other selected
models is highlighted in the table. Furthermore, NXP refers to the performance
of the current forecasting system at the company. As explained in the previous
section, NXP’s performance for Datasets 1, 2 and 3 is derived from the best
prediction of a pool of 52 models in their forecasting system, while the forecasts
for Datasets 4, 5 and 6 are performed and evaluated manually. It is important
to clarify that NXP selects the best forecasting method for each month from a
pool that includes the techniques considered in the comparison, except for RNN.
Therefore, the monthly NXP forecast is at least as good as the best forecasting
method for that month, such that on average, it will always perform better than
all forecasting methods included in the NXP system.



Semiconductor Demand Forecasting using LSTCN 9

Table 3: Best hyperparameter values for each method.

6TG level
ARIMAX ET RNN LSTCN
AR MA trees depth split leaf lrate loss patches λ aggregation

Dataset 1 5 2 110 9 4 2 0.1 MAE 3 0.001 average linear
+ DW 5 2 60 7 4 2 0.01 MAE 3 0.001 average linear

Dataset 2 5 2 80 6 4 3 0.01 MSE 1 1 average linear
+ DW 1 3 60 9 4 2 0.01 MAE 2 0.1 average linear

Dataset 3 1 2 100 6 3 2 0.01 MSE 3 0.001 nonlinear
+ DW 5 4 100 7 4 2 0.1 MAE 2 0.1 average linear

Dataset 4 2 1 70 9 3 2 0.01 MSE 3 0.1 average nonlinear
+ DW 1 1 120 6 3 2 0.01 MAE 3 0.1 average nonlinear

Dataset 5 1 3 80 6 4 2 0.01 MSE 3 0.001 average nonlinear
+ DW 1 2 70 6 4 2 0.1 MAE 3 0.1 average linear

Dataset 6 2 5 80 6 4 2 0.1 MAE 3 0.1 average linear
+ DW 1 1 80 6 5 2 0.01 MAE 3 1 average linear

Table 4: Volume weighted MAPE for each method and the NXP forecasting
system.

Channel Group MAG level 6TG level NXP LR ARIMAX ET RNN LSTCN

DMM

Group 1
Dataset 1 40.2 42.6 44.8 41.6 63.2 42.1
+ DW 44.6 47.1 39.7 45 41.4

Group 2
Dataset 2 35.9 42.6 46.3 40.9 42.5 35.5
+ DW 42.2 45.6 37.3 40.1 33.9

Group 3
Dataset 3 36.6 44.4 38.9 46 63 38.5
+ DW 47 42.1 40.7 61.4 36.7

DF

Group 1
Dataset 4 38.8 46 42.2 41.3 63 45.6
+ DW 45.6 44.3 39.6 61.8 45

Group 2
Dataset 5 30.8 42.6 41.2 39.4 35.7 35.4
+ DW 43.4 37.6 38.7 55.5 34.6

Group 3
Dataset 6 19.1 28.5 35 31.6 54.9 36.3
+ DW 33.5 36 30.7 40.9 33.4

In the results, we observe that LSTCN provides the best results for the
datasets of groups 2 and 3 in the DMM channel and group 2 in the DF channel,
compared to the other tested methods. LSTCN and ET provide the closest
performance to NXP’s forecasting system, with an average difference of 4.65
and 5.39 percentage points, respectively. We also observe that LSTCN is even
able to outperform in 2% the NXP forecasting system for Dataset 2 while using
the DW data. It is noticeable that LSTCN and ET were able to leverage the
inclusion of DW data for all the channels and groups analyzed, however, this is
not always the case for LR, ARIMAX and RNN models.

Figure 2 shows an example forecast for a period of six months, of a randomly
selected 6TG level product group from Dataset 2, when excluding and including
the DW data. In this example, we illustrate how LR, ARIMAX, and RNN models
produce poor forecasting of the last months of the dataset. The results of LR



10 I. Grau et al.

(a) excluding DW data

(b) including DW data

Fig. 2: Forecasts for requested orders of a randomly selected 6TG product group
from Dataset 2.



Semiconductor Demand Forecasting using LSTCN 11

and ARIMAX do not improve when including DW data, while for the RNN,
we can observe a slight improvement. The ET and LSTCN models produce the
best forecasts, as reflected in the general experimental results. For this particular
instance, we can observe that LSTCN makes the closest forecasting to the actual
values (brown dashed series) since it adequately captures the peaks and valleys
of the series. In contrast, the LR and ARIMAX models overestimate the peaks
and valleys of the actual values. Even though the forecasts do not seem to differ
significantly, when including DW, the ET and LSTCN forecasts are more precise
in Figure 2b. The latter observation is especially visible in the LSTCN forecast
for the 19th month.

Overall, in the experiments, LSTCN shows its suitability as a candidate for
inclusion in the forecasting system of the company. Our method obtains the
best performance in three out of six tested datasets, complementing the ET
regression predictions already available in the forecasting system. LSTCN also
outperformed the vanilla RNN while requiring considerably smaller training time
[10]. As a result, the company decided to integrate LSTCN as one of the models
in its forecasting system. Given the potential of the method for including prior
knowledge in the weight matrix and the possibility of obtaining explanations
in the form of feature attribution, the company is interested in continuing the
collaboration to leverage further the characteristics of LSTCN.

4 Conclusions

In this paper, we studied the forecasting capabilities of the Long Short-term
Cognitive Networks using a real case study concerning multivariate time-series
data describing the demand for six different groups of products of a semiconduc-
tor company. These novel gated recurrent neural networks use chained learning
blocks, each processing a specific time patch in the time series. More importantly,
the knowledge learned in a given block is transferred to the next one, thus en-
abling shallow learning implemented via a fast pseudo-inverse learning rule. One
of the main contributions of this paper is that it studies different aggregation
operations used when building the matrices to be transferred to the next neural
processing system.

The results of numerical simulations have shown that the LSTCN model out-
performed well-established methods such as linear regression, ARIMAX, extra
tree regression, and vanilla RNN for three of the six tested datasets. Remark-
ably, LSTCN outperformed NXP’s current ensemble of 52 models in one dataset
while reporting very low training times. As for the optimal parameter settings,
the average linear and the average non-linear aggregation operators combined
with small penalization values reported the best results. This provides strong ev-
idence that the model is not overfitting the data; otherwise, larger penalization
values would have been preferred. It is reasonable to assume that the average
operation is an effective mechanism to prevent overfitting in this case study.

The promising forecasting results, the short training time, the potential for
including prior knowledge, and the interpretability of LSTCNs [10] led to the



12 I. Grau et al.

integration of this algorithm into the suite of models available in the company’s
forecasting system. Similarly, the possibility of including additional knowledge
in the form of a prior knowledge matrix defined by human experts brings a
significant advantage over other forecasting models. Such a possibility will be
investigated in our future research endeavours.

References

1. Ahmad, M.W., Reynolds, J., Rezgui, Y.: Predictive modelling for solar thermal
energy systems: A comparison of support vector regression, random forest, extra
trees and regression trees. Journal of Cleaner Production 203, 810–821 (2018).
https://doi.org/10.1016/j.jclepro.2018.08.207

2. Blackburn, R., Lurz, K., Priese, B., Göb, R., Darkow, I.L.: A predic-
tive analytics approach for demand forecasting in the process industry.
International Transactions in Operational Research 22(3), 407–428 (2015).
https://doi.org/10.1111/itor.12122

3. Da Veiga, C.P., Da Veiga, C.R.P., Catapan, A., Tortato, U., Da Silva, W.V.: De-
mand forecasting in food retail: A comparison between the holt-winters and arima
models. WSEAS Transactions on Business and Economics 11(1), 608–614 (2014)

4. Dijkman, R.: Digital process transformation. Inaugural lecture, Technische Uni-
versiteit Eindhoven (2022)

5. Jun, S.P., Park, D.H., Yeom, J.: The possibility of using search traffic in-
formation to explore consumer product attitudes and forecast consumer pref-
erence. Technological Forecasting and Social Change 86, 237–253 (2014).
https://doi.org/10.1016/j.techfore.2013.10.021

6. Ma, S., Fildes, R.: Retail sales forecasting with meta-learning. Eu-
ropean Journal of Operational Research 288(1), 111–128 (2021).
https://doi.org/10.1016/j.ejor.2020.05.038

7. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The m4 competition: Results,
findings, conclusion and way forward. International Journal of Forecasting 34(4),
802–808 (2018). https://doi.org/10.1016/j.ijforecast.2018.06.001

8. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning
forecasting methods: Concerns and ways forward. PloS one 13(3), e0194889 (2018).
https://doi.org/10.1371/journal.pone.0194889

9. Morales-Hernández, A., Nápoles, G., Jastrzebska, A., Salgueiro, Y., Van-
hoof, K.: Online learning of windmill time series using long short-term
cognitive networks. Expert Systems with Applications 205, 117721 (2022).
https://doi.org/10.1016/j.eswa.2022.117721

10. Nápoles, G., Grau, I., Jastrzebska, A., Salgueiro, Y.: Long short-
term cognitive networks. Neural Computing and Applications (2022).
https://doi.org/10.1007/s00521-022-07348-5

11. Nápoles, G., Vanhoenshoven, F., Falcon, R., Vanhoof, K.: Nonsynap-
tic error backpropagation in long-term cognitive networks. IEEE Transac-
tions on Neural Networks and Learning Systems 31(3), 865–875 (2020).
https://doi.org/10.1109/TNNLS.2019.2910555

12. Nápoles, G., Vanhoenshoven, F., Vanhoof, K.: Short-term cognitive networks, flex-
ible reasoning and nonsynaptic learning. Neural Networks 115, 72–81 (2019).
https://doi.org/10.1016/j.neunet.2019.03.012



Semiconductor Demand Forecasting using LSTCN 13

13. Ramachandra, H.V., Balaraju, G., Rajashekar, A., Patil, H.: Machine learning ap-
plication for black friday sales prediction framework. In: 2021 International Con-
ference on Emerging Smart Computing and Informatics (ESCI). pp. 57–61 (2021).
https://doi.org/10.1109/ESCI50559.2021.9396994

14. Seyedan, M., Mafakheri, F.: Predictive big data analytics for supply chain demand
forecasting: methods, applications, and research opportunities. Journal of Big Data
7(1), 1–22 (2020). https://doi.org/10.1186/s40537-020-00329-2

15. Silva, J., Mojica Herazo, J.C., Rojas Millán, R.H., Pineda Lezama, O.B., Gamero,
W.M., Varela, N.: Early warning method for the commodity prices based on ar-
tificial neural networks: Smes case. Procedia Computer Science 151, 1243–1248
(2019). https://doi.org/10.1016/j.procs.2019.04.179

16. Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting. International Journal of Forecasting 36(1), 75–85 (2020).
https://doi.org/10.1016/j.ijforecast.2019.03.017

17. Tang, X., Dai, Y., Wang, T., Chen, Y.: Short-term power load forecasting based
on multi-layer bidirectional recurrent neural network. IET Generation, Trans-
mission & Distribution 13(17), 3847–3854 (2019). https://doi.org/10.1049/iet-
gtd.2018.6687

18. Wang, G., Gunasekaran, A., Ngai, E.W., Papadopoulos, T.: Big data analytics in
logistics and supply chain management: Certain investigations for research and
applications. International Journal of Production Economics 176, 98–110 (2016).
https://doi.org/10.1016/j.ijpe.2016.03.014


