
Efficient Keyword Generation using
Pretrained Language Models

Cédric Goemaere[0000−0001−7308−2885], Thomas Demeester[0000−0002−9901−5768],
Tim Verbelen[0000−0003−2731−7262], Bart Dhoedt[0000−0002−7271−7479], and

Cedric De Boom[0000−0003−0763−8114]

Ghent University, Ghent, Belgium

Abstract. Pretrained language models can generate impressive bodies
of text but often lack controllability, thereby limiting their practical use.
While there is a large amount of literature on sentiment or topic control,
this is not the case for keyword generation, where the goal is to generate
a sentence that contains a predetermined target keyword. One study
solves the problem formally, but its suggested solution is impractical, as it
involves fine-tuning the entire pretrained language model for every single
target. We improve on this study by optimizing the implementation of its
training framework, using a mathematically more rigorous loss function
and designing several parameter-efficient solutions that act as guided
decoding strategies of the pretrained language model, which we view as
a black box. According to our results, all our designs meet the criteria for
efficient keyword generation. One approach is even capable of zero-shot
generalization. Moreover, due to their simplicity, the inner workings of
all our designs are interpretable, which allows for an explanation of the
observed results.

Keywords: keyword generation · algorithmic efficiency · explainable AI
· pretrained language models · natural language processing

1 Introduction

The capabilities of a pretrained language model (LM) are impressive, but its
steerability is often limited to a simple input prompt. In practice, the user may
want to impose a goal or intent on the model, e.g. a plot in story generation.

As a workaround, it is possible to modify a language model in such a way
that it either is fine-tuned on the given task or can accept an additional input
to specify the target. The most practical approaches are those that are as effi-
cient as possible in terms of parameter count, training/inference time and data
requirements. To that end, we view the original pretrained LM as a black box
and add simple trainable layers at its output. Additionally, this creates a split
between ‘modeling language’ and ‘steering towards the target’, thereby allow-
ing the inner workings of the approach to be interpreted. To the best of our
knowledge, we are the first to use this approach for controllable text generation.

While topic or sentiment are popular control targets [3], we instead focus on
the task of keyword generation, where the goal is to generate a sentence that
contains a predetermined target keyword1.

1 This paper is a thesis abstract. The full Master’s thesis can be found here.

https://lib.ugent.be/en/catalog/rug01:003063469/files/0


2 C. Goemaere et al.

2 Methodology

Khalifa et al. formally solved the problem of keyword generation using pretrained
LMs and designed a practical and stable training framework called KL-Adaptive
DPG [2]. They chose to train a policy the size of the original LM, which limits
its practical usability. Instead, we will design more efficient approaches.

Inspired by earlier work that tries to translate the cosine similarity between
two word embeddings into a conditional probability [1], we suggest an approach
called ‘SimPolicy’. It trains a small feedforward neural network that takes 2
inputs, namely a single token’s probability according to the LM and its cosine
similarity to the target keyword, and produces the token’s new output proba-
bility. This policy is not aware of the exact LM, token or target keyword it is
working with, it only knows the given input numbers. This allows it to generalize
in a zero-shot manner to previously unseen LMs and target keywords.

A different approach, named ‘EmbeddingPolicy’, is to multiply the LM’s
output probability with a target-specific constant prior over the vocabulary,
similar to how a constant vector represents a specific word embedding.

While SimPolicy has the advantage of zero-shot generalization, Embedding-
Policy has more knowledge of the specific tokens and targets it is working with.
By combining these two policies, it is possible to reap the benefits from both. We
call these hybrid policies ‘SimbeddingPolicy’ and ‘EmbeSimPolicy’, depending
on the order of the components.

3 Results

All policies manage to include the keyword in the sentence significantly more of-
ten than the original LM (see Fig. 1). Except for SimPolicy, all policies are rather
stable over the horizontal axis, which represents target keywords of increasing
document frequency from left to right. While the keyword inclusion scores are
quite low overall, this should not affect the end user, thanks to the low overhead
of additional generations in parallel.

As a result of steering the LM towards the target, most policies suffer from a
slight loss in fluency as indicated by a higher perplexity under the original LM
(see Fig. 2). Only EmbeddingPolicy manages to maintain fluency.

 intellect
 repetition

 experimentation

 proposition

 token
 regime

 symbol
 point

 analysis
 people

 class

0.0

0.1

0.2

0.3

0.4

0.5
Fraction of sequences that contain the keyword k

OriginalLM
EmbeddingPolicy
SimPolicy
EmbeSimPolicy
SimbeddingPolicy

Fig. 1. Keyword inclusion score

 intellect
 repetition

 experimentation

 proposition

 token
 regime

 symbol
 point

 analysis
 people

 class

60

80

100

120

140

Perplexity under a
OriginalLM
EmbeddingPolicy
SimPolicy
EmbeSimPolicy
SimbeddingPolicy

Fig. 2. Output perplexity



Efficient Keyword Generation using Pretrained LMs 3

References

1. Blok, S.V., Medin, D.L., Osherson, D.N.: Probability from similarity (2002)
2. Khalifa, M., Elsahar, H., Dymetman, M.: A Distributional Approach to Controlled

Text Generation. CoRR abs/2012.11635 (2020), https://arxiv.org/abs/2012.
11635

3. Zhang, H., Song, H., Li, S., Zhou, M., Song, D.: A survey of con-
trollable text generation using transformer-based pre-trained language mod-
els (2022). https://doi.org/10.48550/ARXIV.2201.05337, https://arxiv.org/abs/
2201.05337

https://arxiv.org/abs/2012.11635
https://arxiv.org/abs/2012.11635
https://doi.org/10.48550/ARXIV.2201.05337
https://arxiv.org/abs/2201.05337
https://arxiv.org/abs/2201.05337

	Efficient Keyword Generation usingPretrained Language Models-8pt

