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This is an abstract of a paper published at the 21st International Conference on
Autonomous Agents and Multiagent Systems [9].

While deep reinforcement learning (RL) has been successful in playing games
[4, 11], its real-life applications remain limited. To bridge this gap, we discuss a
problem of active wake control (AWC) in wind farms and present a simulator
that can be used to address this problem using deep RL.

When a turbine extracts energy from the wind, it creates a wake behind its
rotor. Wakes can extend for several kilometers and thus negatively impact other
turbines in a wind farm (see Fig. 1) [14]. Field studies report 7%–13% wake losses
for current wind farms [1], but potentially much higher for future wind farms
larger than 1 GW [16]. Mitigation of these wake-induced losses thus becomes
an increasingly important aspect of wind farm operation. A popular approach
to AWC is to simulate wakes for different combinations of turbine yaws (i.e.,
horizontal-plane angles) [6, 5]. Optimization is then done numerically per so-
called steady-state conditions in which the environment of the problem does not
change. At the same time, RL is especially well-suited for AWC, as it includes
stochastic transitions between states—something that steady-state models miss.
Nevertheless, studies of RL for AWC remain limited [15, 12, 3].
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Fig. 1. An example of active wake control.
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In this paper, we present a novel dynamic wind farm simulator available at
https://doi.org/10.4121/19107257. To facilitate future research in AWC from
the RL community, our simulator uses the OpenAI Gym format [2]—a standard
in RL. Our simulator is designed with real-life wind farm operation in mind and
includes not only turbines, but various other equipment, such as meteorological
masts and nacelle-mounted meters. This allows the simulations to better reflect
the reality of wind farm operation.

RL models assume that control is performed at discrete time steps. To simu-
late the wakes in each time step, we use the state-of-the-art steady-state frame-
work called FLORIS [10]. Changes of the environmental data (e.g., wind speed
and direction) between steady states are simulated by a stochastic process de-
fined by the user. We implemented one such process, namely the multivariate
Ornstein–Uhlenbeck process [7, 13] estimated from publicly available meteoro-
logical observations at the Hollandse Kust Noord offshore wind farm zone [8].

In addition to introducing the simulator, we conducted two experiments. In
the first experiment, we considered three possible ways to encode actions based
on the current yaw, absolute angle, and the incoming wind direction respec-
tively, only the first of which appeared in the previous studies of RL for AWC.
We compared the performances of two state-of-the-art RL algorithms for each
representation and showed that the default yaw-based encoding is outperformed
by the two alternatives. These new action representations are included in our
simulator and should be adopted in the future research of RL for AWC.
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Fig. 2. Relative performance of two deep RL algorithms using different action rep-
resentations. Here 0 stands for no improvement over the baseline control strategy of
facing the wind with all turbines, and 1 for the maximum possible improvement.

In the second experiment, we demonstrated the benefits of RL compared to
model-based control. As the scale of noise injected into the observations grows,
model-based optimization struggles to outperform the baseline strategy, drop-
ping from 9.5% improvement over the baseline to just 0.2%. While RL also suf-
fers from the added noise, its performance improvement varies between 8.5% and
7.4%, giving a statistically significant improvement over model-based control.

Our findings show that deep RL is a promising approach to AWC. We hope
that this work sparks interest of the RL community in this problem, and that
our results will make it easier for other researchers to develop new RL-based
methods for active wake control.
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