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Abstract. An important sign of intelligence is the capacity to apply a body of
knowledge to a particular situation in order to not only derive new knowledge,
but also to determine relevant questions or provide explanations. Developing in-
teractive systems capable of performing such a variety of reasoning tasks for the
benefits of their users has proved difficult, notably for performance and/or devel-
opment cost reasons. Still, recently, a reasoning engine, called IDP3, has been
used to build such systems, but it lacked support for arithmetic operations, seri-
ously limiting its usefulness. We have developed a new reasoning engine, IDP-Z3,
that removes this limitation, and we put it to the test in four knowledge-intensive
industrial use cases.

This paper describes FO(-) (aka FO-dot), the language used to represent knowl-
edge in the IDP3 and IDP-Z3 system. It then describes the generic reasoning tasks
that IDP-Z3 can perform, and how we used them to build a generic user interface,
called the Interactive Consultant. Finally, it reports on the four use cases.

In these four use cases, the interactive applications based on IDP-Z3 were capable
of intelligent behavior of value to users, while having a low development cost
(typically 10 days spread over involved parties) and an acceptable response time
(typically below 3 seconds). Performance could be further improved, in particular
for problems on larger domains.

1 Introduction

In [27], McCarthy presents four possible levels of use of logic in Artificial Intelligence.
Intelligent machines at the first level, such as neural networks, do not use logic sen-
tences at all. At the second level, machines use logic sentences to represent facts from
which they reach conclusions using ad-hoc procedures, typically written in imperative
programming languages, without the generality of ordinary logical inference.

Machines at the third level use logical deduction to reach conclusions. He cites Pro-
log as one of the languages used to program them. Such machines are rather specialized:
“the facts of one program usually cannot be used in a database for other programs.” This
is a result of their fixed deduction strategy: because Algorithm = Logic + Control [26],
one has to use a new set of logic rules to create an algorithm for a new task in the same
problem domain.
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By contrast, machines of the fourth and most advanced level do not have a fixed
deduction strategy. The fourth level “involves representing general facts about the world
as logical sentences. [..] The facts would have the neutrality of purpose characteristic of
much human information. [..] A key problem for achieving the fourth level is to develop
a language for a general common-sense database.”.

The IDP-Z3 system seeks to address that challenge: it is designed so that a) one can
express knowledge about possible worlds using logical sentences, and b) this knowledge
can be used for many different computational tasks. To distinguish it from inference
engines at the third level, we call it a “reasoning engine”. Reasoning engines enable the
Knowledge Base paradigm [18], in which systems store declarative domain knowledge,
and use it to solve a variety of problems. This approach can significantly reduce the
development and maintenance costs of intelligent machines [21].

In this paper, we present IDP-Z3 and various tools and extensions built around it. In
particular, we demonstrate that IDP-Z3 allows users to leverage their domain knowledge
to produce flexible interactive systems that offer all the necessary functionality and
computational performance to handle real-world problems. There are several aspects to
this:

— The FO(-) language is important to allow complex knowledge to be represented in
a natural and elaboration-tolerant knowledge base.

— The modular and classical nature of FO(-) make it easy to extend a KB with parts
that are written in more user-friendly notations such as DMN or Controlled Natural
Language.

— The range and performance of the generic reasoning algorithms offered by IDP-Z3
suffices to implement a large class of interactive applications in an efficient way.

We present four knowledge-intensive use cases as evidence for our claims: they
show that (1) real users are indeed able to participate in the construction of the KB,
(2) that IDP-Z3 delivers significant value to these users, at low development costs, (3)
that the IDP-Z3 system, while not the most efficient solver that exists, is able to deliver
performance that suffices to handle the real-world instances that the users want to tackle.

We begin by elaborating on FO(+) and alternative formalisms in Section 2.1. Next,
we present the IDP-Z3 engine and its features in Section 3, followed by Section 4
in which we expand on the Interactive Consultant, a generic, user-friendly interface
to solve real-world problem using the reasoning power of IDP-Z3. As an empirical
evaluation of the system, we report on four knowledge-intensive industrial use cases
in Section 5, and demonstrate the benefits of creating interactive applications using
IDP-Z3. Finally, we compare IDP-Z3 to other reasoning engines for model-based KR
languages in Section 6, and conclude in Section 7.

In short, the contributions of this paper are:

— an overview of FO(-) and related formalisms;

the presentation of IDP-Z3, a new reasoning engine;

a summary of case studies involving IDP-Z3, to support our claims;

a qualitative comparison between IDP-Z3 and other reasoning engines.
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2 Knowledge representation

This section presents the languages used to represent knowledge in IDP-Z3-based sys-
tems: FO(+) and related formalisms.

2.1 FO()

FO(-) (aka FO-dot) is the Knowledge Representation language used by the IDP-Z3
reasoning engine. It was introduced in [15]. It is based on first-order logic (FOL) for
its constructs (A, V, -, =, V, 3J) and its model semantics. FO(-) extends FOL with a few
language constructs to express complex information such as non-inductive, inductive
and recursive definitions and aggregates. The syntax of the concrete logic used in IDP-
Z3 is documented online’.

An FO(-) Knowledge Base minimally consists of a vocabulary and a theory. The
vocabulary describes the domain-specific ontology symbols that can be used in the
theory. A theory is a collection of assertions about possible state of affairs. There are
three classes of assertions: axioms, definitions and enumerations.

A Knowledge Base written in FO(-) cannot be run: it is just a “bag of information”
formally describing models in a problem domain. This is a consequence of the FO(-)
design goal to be task-agnostic. A corollary is that such a KB does not distinguish inputs
from outputs, and allows reasoning in any direction.

A key advantage of the model-theoretic semantics is that it allows reasoning with
incomplete knowledge of the state of affairs. When not much is known, many states
of affairs are possible, and the theory has many models representing them. As more
information is obtained, the set of models is reduced. This reduced set of models can be
used to perform various forms of reasoning, e.g., to derive the consequences of what is
known, or to find the model that maximizes a utility function.

As a very simple example, consider the voting law that states: “You have to vote in
an election if you are at least 18 years old at election time (otherwise you can not)”.
The formula in FO(-) is:

vote() << 18 < agel().

If the age is known, the obligation to vote can be inferred; if the obligation to vote
is known to be true instead, the age is known to be 18 or more, in any model.
We highlight the main features of FO(-) below.

Types Besides boolean, integer and real types, FO(-) allows the creation of custom
types, e.g., Person. Predicates and functions are declared in the vocabulary, with a
type signature, e.g., weight: Person — Real. In the quantified formula Vx in T
: p(x), x ranges over the extension of type T. Types are used to syntactically ver-
ify that formulae are well-typed, helping detect common errors. Types are also called
“sorts” [38] in the literature.

3 http://docs.idp-z3.be/en/latest/FO-dot.html
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Axioms The first class of assertions in a FO(-) theory is the class of axioms. Axioms
are logic sentences that are true in any possible state of affairs.

The voting law above is an example of axiom. A voting law that does not make
voting mandatory can be expressed in another axiom using material implication:

vote () = 18<age().

(Notice that the voting obligations and permissions are represented without any modal
operator, unlike formulations in deontic logic [37].)

(Inductive) definitions The second class of assertions in FO(-) is the class of (possibly
inductive) definitions. Definitions are very useful forms of knowledge: they specify a
unique interpretation of a defined symbol, given an interpretation of its parameters. For
example, the transitive closure of a graph is uniquely defined for every graph.

It is well known that FOL cannot represent inductive definitions such as the tran-
sitive closure of a graph. By contrast, FO(-) can represent such definitions based on
an extension of FOL for inductive definitions, called FO(ID) [15]. (Inductive) defini-
tions in FO(ID) define a defined predicate P in terms of the parameters of its definition
by specifying an iterative process to construct the interpretation of P from the inter-
pretation of its parameters. However, consistent with the model-based approach, such
definitions allow reasoning with any partial knowledge, in any direction. For example,
it allows finding all the graphs that have a given transitive closure.

Definitions are often formulated in natural languages as a set of “rules” specifying
necessary and sufficient conditions for the definiendum to hold. FO(-) definitions are
also of this form, as illustrated in Listing 1.1. The definiens, i.e., the body of a rule, can
be any FOL formula. The formalism of definitions in FO(-) is elaboration tolerant in the
sense that one can easily add a rule to a definition.

Listing 1.1: Multi-rule definition

{can_drive () < has_license() A age() < 85.
can_drive () < has_license () A tested().

}

Because rules are part of definitions in FO(-), the head of a rule must be a single
atom (in contrast to ASP which allows a disjunction in the head of so-called choice
rules). Unlike in default logic [32], exceptions to a rule must be explicitly stated in
the rule (possibly in the form of a predicate defined separately). Unlike in defeasible
logic [29], rules do not have any priority ordering.

Data theory FOL is not well suited to express simple data about a concrete state of
affairs. Unique Names (UNA), Domain Closure (DCA), and Completion (CA) Axioms
are needed, but stating them explicitly is cumbersome. For example, the UNA consists
of a number of axioms quadratic in the number of constant symbols.

To address this issue, FO(-) offers a third class of assertions, called enumerations,
that specify the set of identifiers interpreting a type (under UNA and DCA), and the
sets and functions interpreting predicate and function symbols (under DCA and CA).
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For example, Person := {Bob, Alice} and weight := {Bob — 80, Alice
— 80} specify the interpretation of type Person and function weight. A collection of
enumerations is called a structure in FO(:). A structure is a particular type of
theory: a “data” theory.

Arithmetic FOC(-) supports formulae with the 4 arithmetic operations on integers and
reals (addition, substraction, multiplication and division), as well as the comparison
operators (equality, disequality and inequalities).

Cardinality and Aggregates The number of elements of type T that satisfy a property p
is formulated in FO(+) as:

#{el € T: p(t)}

Similarly, sum (lambda x in T: £ (x)) denotes the sum of £ (x) for each x in
T. The minimum and maximum aggregates are denoted min, max. Cardinality and ag-
gregate expressions can occur in axioms and in the body of rules.

Concept as a type Sometimes, it is necessary to reason about the concepts in an ontol-
ogy. Informally, the concept behind an ontology symbol is its informal meaning. FO(-)
introduces the type Concept (Whose extension is the set of concepts in the ontology of
the problem domain), and the “$” operator that maps a concept to its interpretation [8].
For example, one might want to count the number of symptoms that a person p has.
This can be formulated as:

#{x € Concept[Person—Bool]:
Symptom(x) A $(x) (p)}

This eliminates the need to reify the Symptom predicates, a technique that is not elabo-
ration tolerant [28] because it requires rewriting every formula involving symptoms.

2.2 Related formalisms

Although FO(-) uses common mathematical notations, it is typically only usable by
trained knowledge engineers. Several approaches have been developed to allow domain
experts without such background to build their own KB, when the full power of FO(:) is
not required. Knowledge in the simpler formalisms is then converted to FO(-) to allow
reasoning using IDP-Z3.

Decision Model and Notation and cDMN The Decision Model and Notation (DMN)
standard [30] is a notation for decision logic. Its goal is to be user-friendly, readable
for everyone involved in the decision process (e.g., business people, IT experts, .. .),
and executable. In DMN, all logic is contained in decision tables: these represent an
input-output relation between the input variables (left, in green) and the output variables
(right, in blue). As an example, consider the table shown in Fig. 1, which defines a
patient’s BMILevel based on their BMI value. Each row of the table expresses a decision
rule, which fires if the value of the input variable(s) matches the condition in the input
cell(s).
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BMILevel

U|BMI BMILevel
1|< 18.5 |Underweight
2([18.5..25)|Normal
3([25..30) |Overweight
41> 30 Obese

Fig. 1: DMN tables express knowledge in a user-friendly way.

In [10], decision tables were used as a way to represent the knowledge in an FO(-)
KB. Indeed, decision tables can be seen as syntactic sugar for FO(-), allowing a user-
friendly representation of definitions. For example, the decision table shown in Fig. 1
can be translated into FO(-) as follows:

{ BMILevel() = Underweight < BMI() < 18.5.
BMILevel () = Normal <« 18.5 < BMI() < 25.
}

This approach was further explored in [22] to formalize knowledge together with
a domain expert. Vandevelde and Vennekens [36] present a tool capable of, among
other things, automatically translating DMN into FO(:), thus further increasing the user-
friendliness of DMN as an alternative modeling language for FO(-).

One downside of this approach however, is the limited expressiveness of decision ta-
bles. While sufficient for typical decision modeling, DMN is ill-suited to express more
complex problems, e.g. that require constraints. As an attempt to overcome this is-
sue, Vandevelde et al. [35] presents Constraint Decision Model and Notation (cDMN),
which extends DMN with the ability to express constraints and related concepts, such as
types, quantification, and more, while retaining the user-friendly tabular format. cDMN
tables are also translatable to FO(-).

Controlled Natural Language Computational semantics [3] studies the translation of
expressions in natural language into formal representations that allow reasoning. Often,
a subset of natural language is considered, with a limited lexicon and grammar.

Claes et al. [9] uses this approach to build ZebraTutor, a semi-automated tool that
solves logic grid puzzles given the clues in a simple natural language. The clues are
translated to FO(-) using a typed version of the semantical framework described in [4].

The “Intelli-Select” use case, described in more detail in Section 5.3, is another
example of this approach. Here, a tree-based grammar is created in advance to define
the valid CNL sentences. An ad-hoc mechanism is used to translate paths (spanning
from the root node to a leaf) to FO(+) sentences.

3 IDP-Z3

IDP-Z3 is a reasoning engine that can perform a variety of reasoning tasks on knowl-
edge bases in the FO(-) language. It is the successor of IDP3 [12], another reasoning en-
gine for FO(-). IDP3 used a custom SAT solver, called minisat(ID) [11]: hence, its sup-
port for arithmetic was limited. By contrast, IDP-Z3 uses an off-the-shelf SMT solver,
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73 [13], which supports reasoning over linear arithmetic. FOLASP [34] is another rea-
soning engine for FO(-), which uses ASP-Core-2 solvers as back-end. However, its
reasoning capabilities are limited to model expansion.

IDP-Z3 can be run at the command line, or integrated in a Python application as a
Python package downloadable from pypi®. Computations can also be run online via a
webIDE’. It is open source® under the LGPL 3 license.

A challenge in writing IDP-Z3 was to re-implement the custom functionality of
minisat(ID) around Z3. In particular, minisat(ID) used custom procedures to handle
inductive definitions. In IDP-Z3, inductive definitions are reduced to formulae accept-
able by Z3, using level mapping, as explained in [31]. Another challenge was the re-
implementation of a custom procedure to determine relevance [24].

The following generic computations are supported by IDP-Z3:

Model checking Verifies that a theory is satisfiable, i.e., that it has at least one model.
Model expansion Takes a theory T and a partial structure S, and computes a model
of T that expands S, if one exists.

— Propagation Takes a theory T and a partial structure S, and computes all their log-
ical consequences, i.e., all the ground literals that are true in every model of T and
S.

— Explanation Takes a theory T, a partial structure S and a literal L obtained by prop-
agation, and computes an explanation for L in the form of a minimal set of axioms
in T U S U{=L} that is inconsistent. This explanation is not necessarily subset-
minimal.

— Optimisation Takes a theory T, a partial structure S and a term, and computes the
minimal value of the term in the set of all model expansions of T and S.

— Relevance Takes a theory T and a partial structure S, and determines the atoms that
are irrelevant (or “do-not-care”) in the sense that, if one of their value were changed
in any model M of T expanding S, the resulting M’ structure would still be a model
of T.

— Other reasoning tasks While not natively supported in IDP-Z3, other reasoning

tasks can be developed around IDP-Z3. For example, one could compare two FO(-)

formulations, and show models where they differ, as in the Intelli-Select use case
described in Section 5.3. One could also verify the completeness of definitions (or
of DMN tables), or generate test cases for a KB.

4 Interactive Consultant

IDP-Z3 comes with a demo web application, called the Interactive Consultant [6], that
helps users make decision in accordance with an FO(-) knowledge base, using the rea-
soning abilities of IDP-Z3. It is the successor of AutoConfig [10], which was based on
IDP3. The Interactive Consultant is used in three of the four case studies described in
the next section. It is generic in the sense that it can be reconfigured by simply changing
the FO(-) knowledge base. The user interface is automatically generated based on the

® https://pypi.org/project/idp-engine/
7 https://interactive-consultant.idp-z3.be/IDE
8 https://gitlab.com/krr/IDP-Z3
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m Interactive consultant Fle ¥ Edit View ¥ Reset ¥  Inferences ¥  Help ¥

< Building

region = | Flemish Reglon ~ type of real estate = B monument

< Buyer
buyer = B E3professional buyer B3 professional declaration filed
B B3 suarantee satisfied B2 B3 auditional security required B3 aauitional security satisfied
B2 B3 comiciie established B BEY st ownership 2 B3 causal connection

< Sales Transaction
value = \:| seller = B mortgage loan aliowance
use = ~ 2 B reritage investment 2 Breritage pan

Fig. 2: The Interactive Consultant asks relevant questions to its user, from which it draws conclu-
sions that it can explain.

vocabulary of the knowledge base: this helps reduce the cost of developing applications
significantly [21]. It is available online®.

The Interactive Consultant (IC) allows the user to enter data in any order. This data
is stored in a data theory that is combined with the knowledge base for reasoning. The
IC enables a safe exploration of the decision search space, without the possibility of
making decisions leading to dead ends. This is achieved by continuously computing the
consequences of the data theory, using propagation. If the user is unsure why the IC
propagated a specific choice, they can ask for an explanation. Additionally, while the
user fills in what they know, the interface determines which parameters remain relevant,
avoiding unnecessary work for the user. After having input all values that they deem
necessary, the user can ask the IC to show an optimal decision according to what is
known, using optimization.

The response time of the system after the user asserts or retracts a fact depends on
the speed of the propagation reasoning task. Propagation is often performed by iterative
satisfiability testing [23], i.e., by checking every ground atom to see if it is a conse-
quence of the theory and user input, i.e., if it has only one possible interpretation. We
improve speed of propagation in the Interactive Consultant by reducing the number of
ground atoms to consider:

— When new facts are asserted by the user, previously propagated atoms do not need
to be considered again: indeed, they will remain consequences of the theory and
user input;

— When facts are retracted by the user, atoms that were not consequences of the theory
and user input already will still not be, and do not need to be considered again.

Because decisions are made by a user in a context, it is often important to separate
the ontology describing the context from the one describing the decision and its con-
sequences: while the user has control over his decision, they do not have control over
their context. The inferences described in Section 3 have been adapted to accommodate
this split ontology [7].

? https://interactive-consultant.idp-z3.be/
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5 Case studies

5.1 Machine Component Designer

In [1], the authors describe the creation of an IDP-based knowledge base system for
the design of machine components, implemented in collaboration with a multinational
company. This company employs engineers worldwide to conceive “design-to-order”
components. Before the collaboration, each engineer followed their own ad hoc de-
sign process, mostly based on their own experience and preferences. This approach has
multiple downsides: (a) designing a component consumes a large amount of time, (b)
engineers may choose sub-optimal designs, and (c) if a senior engineer leaves, a great
deal of knowledge is lost by the company.

To overcome these issues, the design knowledge was formalized through a series of
knowledge extraction workshops. In such a workshop, both knowledge engineers and
domain experts are involved in modeling the knowledge used when designing machine
components. Each workshop spanned a few days, and was performed in geologically
different branches of the company, to ensure diversity in the knowledge.

Initially, the DMN standard was used to create a model of the experts’ knowledge.
While DMN was found to be intuitive, it was unable to represent all knowledge in a
straightforward manner. Indeed, DMN is well suited for rule-based, hierarchical deci-
sion procedures with one unique output, but it is not suitable for reasoning when several
choices are possible. For example, to find the optimal design of the component, the user
had to make tentative design choices, determine the resulting cost, backtrack, and sub-
sequently consider alternative designs.

In FO(-) parlance, we would say that DMN can represent definitions, but not ax-
ioms. Axioms are used to exclude designs that are not feasible. To allow the addition
of axioms on top of the rule-based logic, the DMN model was converted into an FO(-)
KB. Additionally, some preferences were added: e.g., “always use the cheapest material
possible.” Using a weighted sum, these preferences can then be used to automatically
determine the optimal design for any given circumstances.

In total, the KB contains 10 parameters describing 60 different materials (such as a
maximum temperature of steel) and 27 parameters for 31 components (such as torque
and maximum pressure).

The Interactive Consultant (described in the previous section) is used to allow inter-
action with the KB. It is configured for this application by simply changing the FO(-)
KB. Besides the standard interactions, the interface was further extended to fit the com-
pany’s specific needs. Examples of such extensions are a functionality to compare two
designs, an extended version of explanations in which not only the set of choices are
shown but also the underlying constraints (which has since been added to the IC), a way
to deactivate and reactivate certain axioms, and an integration with a Machine Learning
algorithm that suggests designs based on historic data.

Overall, the company and its engineers are very positive about the tool. Besides
a reported daily time-save of up to 30 minutes for each engineer, they report other
benefits to its usage. First and foremost, it leads to more “first-time right” designs,
which lowers production time and cost. Secondly, for new engineers the tool serves as
an excellent learning tool, allowing them to indirectly learn from the knowledge of the
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more experienced engineers. For more experienced engineers on the other hand, the
tool is used to challenge their assumptions: when in doubt, they can swiftly verify if
their initial ideas are correct. Lastly, with their knowledge captured in a KB, engineers
leaving will not result in loss of knowledge for the company.

The functionality of the original IDP3-based tool was somewhat limited because
IDP3 is not able to perform floating point calculations. To overcome this, it has recently
been ported over into IDP-Z3, to benefit from its support of arithmetic.

5.2 Adhesive Selection Tool

Together with the Flanders Make Joining & Materials Lab we have been working on a
case study concerning adhesive selection [25].

In industry, the usage of glues is rising in popularity due to their favorable charac-
teristics. However, besides some superficial, vendor-locked websites, there is no tooling
available to support selecting the right adhesive for the right use case. Adhesives come
in a wide range of options, categorised into 18 different adhesive families, with none
suitable for all applications. The selection of an adhesive is based on which substrates
are used (e.g., steel, wood, plastics, ...) and on bond requirements such as minimum
strength, maximum elongation, operating temperature range and more.

To begin, we held multiple knowledge workshops in order to create a KB. Instead
of using DMN to create the initial model, as in the previous case, we used cDMN
due to the constraint-heavy nature of the problem domain. In total, we identified and
formalised 21 adhesive parameters (such as bond strength, adhesion and temperature
range) and 11 substrate parameters (such as solvent resistance, maximum temperature
and magnetic type). The current version of the KB contains 55 individual adhesives,
and 31 substrates.

An interesting aspect of this case is how missing data is handled: if a parameter
value is not known (because it was, e.g., not listed in the adhesive’s data sheet), the
tool assumes the value of the adhesive’s family. In this way, the tool uses a reasonable
estimate of the real value, similar to what the experts do. However, if the family’s value
is also unknown, the tool warns the user that the value is unknown and it does not apply
any constraints to that parameter, instead asking the expert to verify it manually.

The adhesive experts interact with the KB through the Interactive Consultant, al-
lowing them to benefit from all of its features. In particular, it allows reasoning in any
direction. While generally, the goal is to select an adhesive, in other cases, the adhesive
is known, as well as one of the substrates, and the goal is to find a suitable second sub-
strate. This “substrate selection” task is performed without modifying the KB in any
way.

Overall, the first impressions by the experts are positive. In an initial test, the tool
has reduced the selection process from 3 hours to 5 minutes for one especially difficult
case. While it seemed that the tool would be most useful for newer members of the
J&ML lab, the most experienced member has indicated that they can also benefit from
it. Indeed, this member typically chooses from a (limited) set of adhesives of which
they know most properties by heart. Using the tool, they can find out if there are any
other adhesives which might be better suited for a job.
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5.3 Intelli-Select

In [20], the authors present their work together with Intelli-Select!?, on a tool created for
international financial institutions to support investment management. This tool com-
bines Constrained Natural Language (CNL) and the IDP-Z3 system, to offer a user-
friendly way for a customer to define his investment profile. An investment profile is a
set of rules that specify the financial assets that they consider eligible for investment.
This investment profile is created in CNL, and later converted to FO(-) for processing.

For example, a user can construct the CNL sentence “Equities issued in Germany
are eligible” to allow all German equities. Additionally, a free-form Natural Language
(NL) interface is also available, which suggests CNL equivalents. Here, an NL sentence
such as “I would like to invest in German equities” would be translated into the CNL
statement shown earlier.

To create the KB, the CNL statements are represented in FO(-) in the form of two
definitions: one for eligibility, and one for ineligibility. In the application, the IDP-Z3
system is then used to perform several reasoning tasks. Firstly, each time a user adds
new (in)eligibility rules, the system performs propagation to show the effect of the
new rules. If a rule’s effect is unexpected, or the user is unsure why it happened, they
can invoke the explanation inference. When a profile is considered finished, model
expansion can be performed to identify the eligible assets, i.e., those that satisfy the
eligible definition. Moreover, using optimization, it is possible to calculate minimal
cost combinations of these eligible assets.

Besides these standard reasoning tasks, the collaborating company requested a way
to automatically convert the financial profile into a long and complex document with a
specific format. This document, called Appendix A, is used both as an appendix to the
contract with the client, and as the formal input to one of the systems in place at the
company. Previously, the company created such a document manually, a process which
typically took a few months to complete. However, because the required knowledge of
a financial profile is already present in the KB, we were able to add a specific method
to automatically generate these documents in a few seconds, as described in [19].

As lessons learned, the authors outline two things. Firstly, they mention that com-
pared to standard applications in the field of financial technology, their tool is low in
maintenance due to the separation between domain knowledge and reasoning tasks.
Secondly, while the creation of a KB is typically a challenging task, the use of CNL is
a good way of lowering the effort.

5.4 Notary / Legislation

The fourth case study deals with registration duties on property purchases in Belgium.
It was originally presented in [22] and later extended in [21]. In Belgium, registration
duties depend on many parameters, such as the location, the type of property, the char-
acteristics of the buyer and the seller, and more. At the time of the first publication,
these duties were determined by 11 articles of law. For this case, a collaboration with a
notary was set up to ensure the correctness of the knowledge.

Initially, the knowledge engineer and domain expert worked together to create a
DMN model of the legislation. Here, the user-friendliness of DMN meant that it could

10 https://www.intelli-select.com/
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be used as a “common language” between the two, leading to less formalization errors.
This is an important point, as the law field contains a great deal of complex jargon.
After the DMN model was finished, the knowledge engineer converted the tables into
FOC(.), ready to be used by the IDP system. Together with the Interactive Consultant,
this formed an easy-to-use application. Note that standard DMN tools would not have
been sufficient, as the notary required a tool that could reason with partial information
and could optimise the cost of the duties. In total, the formalization process took 10
person-days.

Later in 2018, the relevant law was simplified by the Belgian government. In [21],
the KB is updated to reflect these changes, together with improvements to the Interactive
Consultant as requested by the notary office. While the change was the most significant
change to the real estate sales law to have ever happened, updating the KB required
only 0.5 person-days, due to the KB’s modular nature.

This application has been ported to IDP-Z3, and is available online'!. It takes ad-
vantage of the arithmetic capabilities of IDP-Z3 to calculate the tax amount due.

6 Evaluation

We evaluate IDP-Z3 by comparing its functional capabilities to those of other systems,
and by comparing its performance against user expectations.

6.1 Functional comparison to other systems

Table 1 compares FO(-) to two other model-based languages on the basis of their docu-
mentation: SMT-LIB-2 [2] and ASP-Core-2 [5]. Table 2 compares IDP-Z3 to reasoning
engines for SMT and ASP. The features in the comparison tables are described in Sec-
tions 2.1 and 3.

None of the languages or systems are complete. Hence, they are under further de-
velopment to bring more expressivity to the languages, and more reasoning capability
to the reasoning engine.

Because they share many concepts, some researchers have investigated the possi-
bility to transform a KB in one language into a KB in another, e.g., to improve perfor-
mance:

— IDP-Z3 itself transforms FO(-) KBs into SMT-LIB-2 KBs;

— FOLASP transforms FO(-) KBs into ASP-Core-2, allowing performance compar-
isons [34]; the semantics correspondence between FO(ID) and ASP is explored
in [16];

— and several ASP-Core-2 solvers are based on SMT solvers (e.g., [33]).

6.2 Performance evaluation

Deryck et al. [20] already reported response time below 3 seconds for the Intelli-Select
application, for a typical investment profile.

We now discuss the performance of IDP-Z3 in the other case studies. We believe
that these results are representative for other interactive applications based on IDP-Z3
and the Interactive Consultant.

' https://interactive-consultant.idp-z3.be/?file=registratie.idp
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Language

Classical syntax
Types, quantification
Uninterpreted types
(Inductive) definitions
Disjunction in head
Integer arithmetic
Real arithmetic
Non-linear arithmetic
Transcendental
Aggregates

Vector, Array
Concept as a type

FO(-) SMT ASP
v v
v oV
v
v v Reasoning IDP-Z3 SMT ASP
v Model checking v v
S v Model expansion v v v
v v Propagation v oo
v Explanation (unsat) v v
_* Step-wise explanation| -~
v Optimisation v ooy
v Relevance v
NG Table 2: Comparison of model-based rea-

Table 1: Comparison o

guages. *Not part of the standard, but pro-
vided by, e.g., Z3 or dReal. **Not part of the

standard, but provided
solvers.

soning systems.
*Provided by some solvers, e.g., IDP3.
**Provided by some solvers, e.g., Z3.

f model-based lan-

by Constraint-ASP

Use case

# symb model size # sentences load time (sec) response time (sec)

Component designer
Adhesive selection
Registration

92 227286 42 329 2.8
136 2061 154 8.3 2.5
31 31 15 0.3 0.1

Table 3: Average response time is below 3 seconds, and load time acceptable.
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Table 3 shows various metrics and performance indicators for each use case. The
column headings are:

# symb: the number of symbols in the vocabulary;

model size: the size of a model, i.e., the sum of the cardinality of the domain of
each predicate and function symbol (they all have a finite domain);

# sentences: the number of axioms and definitional rules in the theory;

load time: the number of seconds needed to load the knowledge base in the Inter-
active Consultant;

resp. time: the number of seconds needed to process the assertion or retraction of a
fact (triggering a propagation).

The load and response times are measured on a Intel® Core™ i7-8850H CPU @
2.60GHz x 12 machine, with 16 GB of memory, using Ubuntu 20.04.03 and CPython
3.9.

The table shows that the load time can exceed 10 seconds for KB with large mod-
els. This is not ideal, but still acceptable in the use case presented. The delay is due
to the transformation of the FO(-) KB into the equivalent grounded FO formula that
is submitted to Z3: the transformation is performed at every load, by code written in
Python, a language not known for its speed. Load time could be improved by rewriting
the transformation in a faster language, or by loading the pre-computed result of the
transformation directly from storage.

The response time of the Interactive Consultant, on the other hand, is below 3 sec-
onds, an adequate delay for interactive applications. This is achieved by retaining the
internal state of IDP-Z3 between interactions. Our experience indicates that such re-
tention is important in interactive applications based on IDP-Z3. Performance could be
further improved by parallelizing propagation, i.e., by running the iterative satisfiability
testing method over multiple instances of Z3.

7 Conclusions

Thirty years ago, McCarthy introduced the concept of intelligent machines of the fourth
kind, capable of performing a variety of computational tasks by applying task-independent
knowledge. Our work shows that such machines are now feasible, and that interactive
applications that deliver real value to their users can be developed at low costs (typically
10 days of effort split over involved parties) and with acceptable performance (response
time typically below 3 seconds).

The following elements have contributed to this success:

— Our use cases are knowledge-rich but data-poor, making it possible to use compu-
tationally complex forms of reasoning. IDP-Z3 brings value by having knowledge
that the user may not have, and by reasoning faster and more rigorously with it than
an expert can.

— IDP-Z3 goes beyond inference engines of the third kind by allowing reasoning
not only with deterministic rule-based definitions, but also with non-deterministic
axioms describing possible worlds. Our result further justifies the revival of interest
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in the seminal papers on the integration of rule-based languages and classical logic:
[15] won 20-year Test-of-Time award at ICLP 2020, and [17] won 20-year Test-of-
Time award at ICLP 2021).

— The use of generic reasoning methods (as recommended in the Knowledge Base
paradigm) and the automatic generation of the user interface of the Interactive Con-
sultant significantly reduce the development costs of intelligent applications. User-
friendly notations like DMN or Controlled Natural Languages can further empower
users to encode their knowledge.

We believe that machines of the fourth kind merits further research. The interaction
between the user and the Interactive Consultant has many similarities with the conver-
sation in a Turing test. Here, the interaction is not conducted in a natural language, but
the machine shows signs of intelligence that would be tested in a Turing test, such as
the capability to ask relevant questions or provide explanations.

Additional research would expand the expressiveness of the knowledge representa-
tion languages and/or improve the performance of reasoning engine. The standardiza-
tion of the concrete syntax of FO(-) could facilitate such research.
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