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Abstract. The Cyclic Hoist Scheduling Problem (CHSP) is a well-
studied combinatorial optimization problem. One of the existing ap-
proaches to solving CHSP is Constraint Programming (CP). In this study,
we examine the possibility of predicting the optimal (minimum) cycle
period p of a CHSP instance – without solving it – using supervised
Machine Learning (ML) approaches. We also suggest using this prediction
to calculate upper and lower bounds of p, and we investigate the impact
of these bounds on the performance of a CP solver. The results of our
experiments show that: 1) ML models, in particular deep neural networks,
can be good predictors of the optimal p, and 2) providing tight bounds
for p around the predicted value to a CP solver can significantly reduce
the solving time without compromising the optimality of the solutions.
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1 Introduction

The Cyclic Hoist Scheduling Problem (CHSP) is an optimization problem of
practical and theoretical importance [2]. The aim is to find a schedule for one
or multiple industrial hoists that move objects between tanks, while minimizing
the cycle period p, which is defined as the difference between the start time of
processing two consecutive objects [3, 4, 6].

One of the existing techniques for solving CHSP is Constraint Programming
(CP) [1, 7]. An efficient exact CP model for the CHSP problem suggested by
Wallace and Yorke-Smith [7] uses calculated lower and upper bounds of p (pcalc)
to specify the space of feasible solutions. Given that such computation reflects
the theoretical maximum range of the period, pcalc tend to be quite loose.

We explore the idea of predicting the optimal value of p – without solving
the CSHP instance – and then restricting the range in which the solver is trying
to find a solution. The hypothesis is that this could result in lower solving times
(t) without affecting the period of the best solution found. Further, when the
bounds (ppred) derived from the prediction become tighter, the solving time could
decrease even further.
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2 Methodology

In order to study our hypotheses, we train various ML models using Keras and
we test their accuracy. Specifically, we fine-tune Deep Neural Network (DNN),
Random Forest (RF) and Gradient Boosting Tree (GBT) models. For training
these models, we obtain a large number of CSHP instances (N = 166, 320) by
implementing a random generator (by following patterns and settings found
in industry examples [3, 4, 6]). As a test set, we use a subset of the randomly
generated instances, together with several industry instances. We solve the
random and industry instances using the CP model proposed by Wallace and
Yorke-Smith [7] with the Google OR-Tools CP solver [5]. In this way, we find the
actual optimal value of p for each instance, which is used as the target value in
training the ML models. A challenge is that, for a CHSP instance with n tanks,
considering all features leads to a dimensionality of (n+1)2 +3n+4. We suggest
using a fixed number of independent variables for the ML models, by replacing
instances’ attributes per tank with their descriptive statistics.

After predicting the p of each instance, we modify the CP model by providing
tighter bounds for p, around ppred. For this we explored ±5% and ±20% margins.
We then assess the effectiveness of the CP solver when these tighter bounds are
used, as explained next.

3 Results

Computational experiments showed that the DNN ML model performed best,
with a MAPE of 3.38 on the random test set. When the predicted bounds ppred

are used instead of the calculated bounds pcalc, the CP solver found the original
(optimal) p in most cases: 94.6% in the case of ±5% margin and 98.8% in the
case of ±20% margin. As hypothesised, the solving time is significantly lower
when these predicted bounds of p (ppred) are used (tpred5% : X = 0.58, s = 4.93;
tpred20% : X = 1.27, s = 11.01; tcalc: X = 1.91, s = 14.09). Moreover, such a decrease
is much larger when the predicted bounds become tighter: the relative decrease
in solving time, when an optimal solution was found, is −70.7% in the case of
±5% margin and −33.1% when ±20% margin is used. This improvement is more
modest in the case of satisfied solutions, but remains statistically significant.

In conclusion, predicting the optimal p value of a CHSP instance is possible
and integrating such a prediction into a CP solver can considerably acceler-
ate the solving phase. Given that the ML models implemented in this study
do not consider CSHP instance attributes like the number of tracks and the
loading/unloading times, this could be investigated in future work.
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