
Scalability of Message Encoding Techniques for
Continuous Communication Learned with

Multi-Agent Reinforcement Learning

Astrid Vanneste†[0000−0002−6742−6722], Thomas Somers†,
Simon Vanneste†[0000−0002−9664−9925], Kevin Mets††[0000−0002−4812−4841],

Tom De Schepper††[0000−0002−2969−3133], Siegfried
Mercelis†[0000−0001−9355−6566], Peter Hellinckx∗[0000−0001−8029−4720]

University of Antwerp - imec
IDLab - †Faculty of Applied Engineering, ††Department of Computer Science

Sint-Pietersvliet 7, 2000 Antwerp, Belgium
*University of Antwerp, Faculty of Applied Engineering

{astrid.vanneste, simon.vanneste, kevin.mets, tom.deschepper,
siegfried.mercelis, peter.hellinckx}@uantwerpen.be

Abstract. Many multi-agent systems require inter-agent communica-
tion to properly achieve their goal. By learning the communication pro-
tocol alongside the action protocol using multi-agent reinforcement learn-
ing techniques, the agents gain the flexibility to determine which infor-
mation should be shared. However, when the number of agents increases
we need to create an encoding of the information contained in these mes-
sages. In this paper, we investigate the effect of increasing the amount
of information that should be contained in a message and increasing the
number of agents. We evaluate these effects on two different message en-
coding methods, the mean message encoder and the attention message
encoder. We perform our experiments on a matrix environment. Sur-
prisingly, our results show that the mean message encoder consistently
outperforms the attention message encoder. Therefore, we analyse the
communication protocol used by the agents that use the mean message
encoder and can conclude that the agents use a combination of an ex-
ponential and a logarithmic function in their communication policy to
avoid the loss of important information after applying the mean message
encoder.

Keywords: Communication Learning · Multi-Agent · Reinforcement
Learning

1 Introduction

Communication is an essential part of what makes humans intelligent and pro-
ductive. The same thing can be said for multi-agent systems. The potential of
these systems can be immensely improved by allowing inter-agent communica-
tion. Communication allows agents to overcome partial observability as well as

2 Astrid Vanneste et al.

coordinate their behaviour. In recent years, research has been done to allow the
agents to learn a communication protocol themselves, perfectly tailored to the
goal and environment of the agents. With an increasing or varying number of
other agents, the need arises to summarize the contents of these messages in a
fixed size encoding to make sure the agents can deal with this large or varying
number of incoming messages. In this paper, we investigate two ways to encode
the messages: a mean communication encoder and an encoder which uses self-
attention. We compare them to each other and to a no communication baseline.
We investigate two different aspects of the environment. First we analyse the
effect of increasing the amount of information that should be contained in a
message. Secondly, we look at the effect of increasing the number of agents in
the environment which also increases the number of incoming messages.

The remainder of this paper is structured as follows. First, in Section 2,
we take a look at prior, related work about communication learning methods.
Section 3 provides some background knowledge about reinforcement learning
and self-attention. In Section 4, we present the methods that we use in this
work. Next, we show the various experiments performed and compare the results
in Section 5. We further discuss our results in Section 6. Finally, we form a
conclusion and present some future work in Section 7 and 8 respectively.

2 Related Work

The research into communication learning using multi-agent reinforcement learn-
ing was introduced by Foerster et al. [3] and Sukhbaatar et al. [17]. Foerster et al.
[3] presented two different communication learning methods that learn discrete
communication called Reinforced Inter-Agent Learning (RIAL) and Differen-
tiable Inter-Agent Learning (DIAL). Sukhbaatar et al. [17] proposed CommNet,
a method to learn continuous communication between agents. Following their
work, different methods to achieve inter-agent communication have been ex-
plored. Jaques et al.[5] encourage communication that results in a change in the
action policy of the agents. In MACC [18] this is taken a step further by per-
forming counterfactual reasoning about the outcome of alternative messages to
evaluate the message that was sent. Similar to CommNet and DIAL, A3C3 [15]
uses backpropagation to learn a communication protocol. A3C3 adds a central-
ized critic that learns a stationary value function which helps to learn the action
and communication policies. Lin et al. [9] use autoencoders to learn an encoding
of the observation which will then be communicated to the other agents.

Many of these works assume a constant or small number of agents. However,
in many cases this is not realistic. When we want to communicate with a larger
or variable number of agents, we have to create an encoding of the incoming
messages. In CommNet [17], they take the mean of all incoming messages to ac-
count for a variable number of incoming messages. This approach was also taken
by Singh et al. [16] in IC3Net. However, different techniques were also explored.
ATOC [6] uses a bi-directional LSTM to encode the incoming messages. Tar-
MAC [2] uses a variation of the attention mechanism where both the sender and

Scalability of Message Encoding for Cont. Comm. Learned with MARL 3

the receiver generate a value, which is then combined to generate the attention
score for the message. This allows the agents to place varying importance on
the incoming messages. The work of Peng et al. [13] specifically focuses on the
challenge of encoding incoming messages while retaining all the necessary in-
formation. They propose an approach which combines a bi-directional recurrent
neural network (RNN) and the attention mechanism. In these works, a variety of
different message encoders have been presented. However, the scalability of these
approaches has not been evaluated. In our work, we aim to give insight in how
the mean message encoding and attention message encoding techniques perform
when we increase the complexity of the environment as well as the number of
agents. This will result in an increase in the information that has to be included
in the messages and an increase in the number of incoming messages.

3 Background

In this section, we provide some background information for our research. First,
we introduce the theoretical framework on which this research is built. Next, we
give a detailed explanation of the attention mechanism.

3.1 Markov Decision Processes

The methods proposed in this paper use the decentralized Markov Decision Pro-
cess (dec-MDP) as proposed by Oliehoek et al. [12]. In a dec-MDP, at timestep
t each agent a ∈ A receives an observation oat of the global state st of the envi-
ronment. Each agent individually is not able to observe the entire state of the
environment. However, when we combine the information in the observations of
all of the agents, we are able to construct the full state of the environment. This
is called joint observability. Based on their observation, each agent will deter-
mine an action ua

t . These actions will result in a new state st+1 and a reward
for each agent rat .

3.2 Self-Attention

The attention mechanism was introduced by Bahdanau et al. [1]. Prior to this,
the most used sequence-to-sequence (seq2seq) mechanisms were recurrent neural
networks (RNN)[14]. The big benefit of the RNN is that it is, in theory, capable of
looking infinitely far back in the sequence. However, in practice when the length
of the sequence increases, the RNN struggles to remember the information from
the start of the sequence. Long Short Term Memory (LSTM) [4] addresses these
concerns by using a gated architecture. However, it still has limits in the length
of the sequence. Another downside of RNN’s, more specific to the context of our
work, is that it deals in sequences with a specific order. In our case, the incoming
messages do not have a specific order and therefore the RNN architecture will
be less suitable. For our research, we require an architecture that is designed to
deal with a set of inputs of an undefined size. The requirements for this type of

4 Astrid Vanneste et al.

Message Encoder ()

Encoding ()

Communication ()

Communication ()

Decoding ()

Encoding ()

Communication ()

Decoding ()

Communication ()

Encoding ()

Communication ()

Decoding ()

Communication ()

Message Encoder ()

Fig. 1: CommNet

architecture are defined by Zaheer et al.[21]. The most important requirement
is that the operation is permutation invariant. This means that the output does
not change when we change the order of the input elements.

Self-attention addresses the issues of RNN’s and is widely used in natural
language processing. It serves as one of the building blocks for the transformer
proposed by Vaswani et al. [19]. Self-attention is able to compare the inputs with
each other and calculate which inputs influence each other. Inside the scaled dot-
product attention module presented by Vaswani et al.[19], calculations are done
in a couple of steps. First, we derive a key, query and value for each of the inputs.
Next, we calculate the attention score by taking the dot product of the query of
an input and all the keys and dividing by the square root of the dimension of
the keys dk. We take the softmax of all the attention scores that belong to the
same query and multiply them with the values corresponding with the used key.
Finally, we calculate the sum of all the weighted values to produce the output.
To compute the attention output for multiple queries simultaneously, we pack
the queries, keys and values into matrices Q, K and V respectively. We can then
calculate the output according to Equation 1 [19]. In Section 4, we discuss how
we can use self-attention in the context of message processing.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (1)

4 Methods

4.1 CommNet

CommNet [17] is a communication learning method that allows the agents to
send continuous messages to each other. Fig. 1 shows the architecture of Comm-

Scalability of Message Encoding for Cont. Comm. Learned with MARL 5

Net when using two communication steps and three agents. We omit the time
index since we only describe a single timestep in the environment. Subscripts are
used to indicate the communication step index and superscripts are used to indi-
cate the agent index. When the agent index is omitted, we describe the collection
containing this variable for all agents. The architecture contains three different
models, the encoding model, communication model and decoding model. First,
the encoding model takes the observation and calculates the corresponding hid-
den state h.

ha
0 = g(oa) (2)

This hidden state is shared with the other agents. Since the hidden states are
used as messages, we call the dimension of the hidden state the message size.
All hidden states that arrive at the agent are encoded by the message encoder
into a communication input c. The observation of the agent is passed to the
encoding function because the observation often contains information that is
needed to determine which information in the messages is relevant for the agent.
It is important to note that, when calculating the message encoding for a certain
agent, only the observation of that agent is used not the observations of the other
agents.

ci = e(hi, o)

= [cai : a ∈ A]

= [ea(hi, o
a) : a ∈ A]

(i ∈ N : 0 ≤ i < S) (3)

The communication network uses the hidden state and the communication input
to calculate the next hidden state. This process can be repeated for S commu-
nication steps.

ha
i+1 = f(ha

i , c
a
i) (i ∈ N : 0 ≤ i < S) (4)

When all communication steps are completed the last hidden state is used by
the decoding model to calculate a distribution over the action space. The action
will be sampled from this distribution.

πa = z(ha
S) (5)

During training, we first collect a batch of episodes using the current policy. This
batch is then used to update our models using the loss function in Equation 6.
The first part consists of the REINFORCE loss[20] where we reduce the variance
on the reward by subtracting the mean of all rewards in the current batch as
a baseline and dividing by the standard deviation of these rewards. The second
part consists of an entropy loss that encourages the agent to explore, weighted
by hyperparameter β. The communication channel is differentiable so the loss
can be backpropagated through the communication channel to provide feedback
to the other agents.

L = −log(π(oa|ua))

(
ra − µ

σ

)
+ β

∑
u′a

π(oa|u′a)log(π(oa|u′a)) (6)

6 Astrid Vanneste et al.

4.2 Message Encoding

In this paper, we investigate two different message encoding techniques namely
the mean and self-attention. These techniques will define the behaviour of the
message encoder described in Equation 3.

Mean Message Encoder The mean message encoder takes the hidden states
of the other agents and takes the mean of them to calculate the output. Taking
the mean of the hidden states is the approach originally proposed by Sukhbaatar
et al. [17]. The disadvantage of the mean encoder is that it gives each incoming
message the same importance. Therefore, we cannot filter out irrelevant infor-
mation or focus on specific information. Since the mean message encoder has
less flexibility, we expect to see that information will be lost when creating the
encoding. Therefore, given the mean of a set of messages it is not guaranteed
that we can retrieve all the relevant information that was provided in these mes-
sages. For the mean message encoder, only the messages from the other agents
are averaged. The message the agent sends will not be taken into account. To
achieve this, we take the sum of all hidden states and add this to the vector con-
taining the negative hidden states of the agents (−hi). This results in a vector
that, for each agent, contains the sum of the hidden states of the other agents.
By dividing this by the number of other agents in the environment (N − 1), we
get a vector ci with, for each agent, the mean of the hidden states of the other
agents. This can be seen in Equation 7.

ci = e(hi, o) =
1

N − 1

(
−hi +

∑
a∈A

ha
i

)
(7)

Attention Message Encoder The second message encoder is based on the
attention mechanism. We use the scaled dot-product attention as proposed by
Vaswani et al.[19] which was explained in Section 3.2. The key and value for the
attention mechanism are calculated using the incoming messages. The query is
calculated based on the message of the current agent and its observation. We
do this because the observation may include information that determines which
information contained in the received messages is relevant to the agent.

Q = q(hi, o),K = k(hi), V = v(hi) (8)

ci = e(hi, o) = Attention(Q,K, V) (9)

Since the attention mechanism is designed to be able to vary the importance
of each of the inputs, the message encoder based on attention will be able to filter
out unnecessary information. However, since the agents need to learn additional
parameters to calculate the keys, queries and values, we expect training to be
slower.

Scalability of Message Encoding for Cont. Comm. Learned with MARL 7

5 Experiments

In this section we describe our experiments. First, we explain the environment
that was used in our experiments and how we scale this environment. Afterwards
we analyse our results. In Figure 2, we can see a global overview of all the results.
We first go into more detail for the results when we increase the number of labels
and then we explain the results when increasing the number of agents. For each
of the methods in all of the experiments we performed five runs with different
random seeds. Our experiments are performed using RLlib [7] and Tune [8] which
are built on the Ray framework [11]. We use parameter sharing between agents
because it has been shown to improve training performance [3].

5.1 Matrix Environment

For the experiments, we use a matrix environment, inspired by the Matrix Com-
munication Games presented by Lowe et al. [10]. The environment consists of
N agents and L labels. At the start of an episode, two labels are selected from
the pool of L possible labels. Next, every agent randomly receives one of these
two labels as its observation in a one-hot encoding. Because the distribution of
the labels among the agents is random, it is possible that every agent receives
the same label. The task of the agents is to say how many other agents received
the same label. This results in a discrete action space. Each agent receives an
individual reward of one if they correctly indicated the number of other agents
with the same label or zero if they were unsuccessful. Therefore, the maximum
reward that all of the agents can achieve together is equal to N . During our
experiments we normalize this reward by dividing the total reward of the agents
together by the number of agents. This way the maximum reward the agents can
achieve together will always be equal to one. The episodes are only one timestep
long so the agents have only one opportunity to find the correct answer.

This environment is jointly observable to the agents because they can only
see their own observations and not the full state. However, all the observations
of the agents combined gives the complete state of the environment. In order
to succeed, the agents need to communicate their label with the other agents.
The environment is easily scalable because we can increase the number of agents
by increasing N and increase the number of possible labels by increasing L.
Increasing N or L will both have a different effect on the environment. By
increasing the number of agents N , each agent will receive a larger number
of messages and the action space will increase. When the number of labels L
increases, each agent will need to be able to communicate a larger number of
different labels in their messages.

5.2 Baseline

In addition to the two approaches with different message encoders, we also
trained a group of agents that was not allowed to communicate. This clearly
shows the importance of communication and whether or not the communicating

8 Astrid Vanneste et al.

Table 1: The hyperparameter values
that are used in our experiments

Hyperparameter Value
Learning Rate 0.002

Discount Factor 0.99
Number of Communication Steps 1

Train Batch Size 80
Activation ReLU

Message Size 16

Table 2: Value of β used to weigh the
entropy loss for each experiment.

Experiment β

N = 3, L = 3 0.44
N = 3, L = 8 0.44
N = 3, L = 16 0.44
N = 3, L = 24 0.44
N = 8, L = 3 0.15
N = 16, L = 3 0.01
N = 24, L = 3 0.01

agents are still benefiting from communication. The agents that cannot commu-
nicate will learn a policy that is nearly random. The no communication agents
are implemented by using the same architecture as CommNet but without any
communication steps. This means we only use the encoding and decoding net-
works without the communication network.

5.3 Hyperparameters and Network Architecture

Our hyperparameters were determined empirically and using a grid search to
get the best results for each experiment. The resulting hyperparameters are still
mostly the same for each experiment and can be seen in Table 1. Table 2 shows
the weight β for the entropy loss, which differs for each experiment. Throughout
the experiments we kept the size of the networks and the message size constant.
This was done to ensure a fair comparison and to clearly see the effect of scaling
up the environment. The encoding model consists of a single linear layer with
input size equal to the number of labels and output size equal to the message
size, followed by a ReLU activation. The communication model is represented
using a single linear layer with input size equal to twice the message size and
output size equal to the message size, followed by a ReLU activation. Finally, the
decoder model is a single linear layer with input size equal to the message size
and the output size equal to the number of actions which is equal to the number
of other agents, followed by a softmax function. The decoding model is the
only model that can vary between experiments, since the action space changes
when we change the number of agents, which will increase the output size of
the network. The communication model will not be used in the experiments
where communication is not allowed, making the complete network smaller. In
addition to these models, the agents that use the attention message encoder will
have three additional models to calculate the queries, keys and values. These
three models are represented with a single linear layer and the output size is
equal to the message size. The input size for the key and value networks is equal
to the message size. For the query network the input size is equal to the message
size plus the number of labels since the observation is included in the input.

Scalability of Message Encoding for Cont. Comm. Learned with MARL 9

3 8 16 24
Number of labels (L)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ise
d

re
wa

rd

No Communication
Mean

Attention

(a) Scaling the number of labels with a con-
stant number of agents (N = 3)

3 8 16 24
Number of agents (N)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
re

wa
rd

No Communication
Mean

Attention

(b) Scaling the number of agents with a con-
stant number of labels (L = 3)

Fig. 2: Results in the matrix environment

5.4 Scaling the Number of Labels

In this section, we present a series of experiments where we increased the number
of labels (L ∈ {3, 8, 16, 24}) while keeping the number of agents fixed (N = 3).
We experimented with four different values for L based on the message size
(= 16), two values that are smaller than the message size (L = 3 and L = 8),
one value that is equal to the message size (L = 16) and one value that is larger
than the message size (L = 24). With a simple communication protocol that
encodes the labels using a one-hot representation, we would need a message size
equal to the value of L. Using this communication protocol both of the encodings
should allow for an optimal action policy to be learned. For a number of labels
that is higher than the message size, we would expect the mean message encoder
to lose information when multiple message combinations result in the same mean
message.

Figure 2a shows the average performance and the standard deviation during
the final 10% of training when we increase the number of labels. The perfor-
mance of the agents that do not communicate is slightly higher than what the
performance would be of a random agent. This is because the agents learn that
some scenarios are more common than others and gain a small benefit from that.
We see that for low values of L (L = 3 and L = 8), both encodings are able to
achieve the maximum reward. However, when the value of L increases we see
that the performance of the attention message encoder starts to diminish. The
performance of the mean message encoder drops only 0.7% between the exper-
iment for L = 3 and the experiment for L = 24 while the performance of the
attention based message encoder drops 12.6%. In the setup of our experiments,
we expected the performance of the mean message encoder to drop when the
number of labels becomes higher than the message size due to the fact that
every message has the same importance. If the mean message encoder can no

10 Astrid Vanneste et al.

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(a) N = 3, L = 3

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(b) N = 3, L = 8

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(c) N = 3, L = 16

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(d) N = 3, L = 24

Fig. 3: Results when increasing the number of labels

longer preserve all relevant information, the attention message encoder should
outperform the mean message encoder since it is a lot more flexible and can
selectively change the attention values to change the importance of each mes-
sage. However, in our results we can see that the mean message encoder always
outperforms the attention message encoder even for 24 labels. However, we can
see that once the number of labels becomes higher than the message size, the
performance of the mean message encoder also starts to decrease.

Figure 3 shows the evolution of the reward during training for each config-
uration. We can see that across all of the experiments, the attention message
encoder trains slower than the mean message encoder. Both the mean and at-
tention message encoders get slower when we increase the value of L. However,
this effect is more prevalent in the results of the attention message encoder.

5.5 Scaling the Number of Agents

In this section, we present a series of experiments where we increased the number
of agents (N ∈ {3, 8, 16, 24}) while keeping the number of labels fixed (L = 3).
The message size is the same as in the previous experiments (= 16). Figure 2b
shows the average performance and the standard deviation during the final 10%
of training when we increase the number of agents. Figure 4 shows the evolution
of the reward during training for each configuration. In Figure 2b, we see that
when we increase the number of agents all of the methods perform worse. With an
increasing number of agents, the action space becomes larger as well. This makes
the problem a lot more complex. The agents that are not allowed to communicate
still have a near random policy which results in a decreasing performance when

Scalability of Message Encoding for Cont. Comm. Learned with MARL 11

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(a) N = 3, L = 3

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(b) N = 8, L = 3

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(c) N = 16, L = 3

0 1 2 3
Timestep 1e6

0.0

0.5

1.0

Re
wa

rd

No Communication
Mean

Attention

(d) N = 24, L = 3

Fig. 4: Results when increasing the number of agents

Table 3: Communication policy for the matrix environment with N = 3, L = 8
and a message size of four

Label Message[0] Message[1] Message[2] Message[3]
0 2,0319 0,0000 1,9082 0,0000
1 2,1820 0,0000 5,2146 0,0000
2 12,2357 0,0000 7,6871 0,0000
3 5,7066 0,0000 6,5708 0,0000
4 3,3961 0,0000 5,5810 0,0000
5 7,7053 0,0000 6,9608 0,0000
6 1,9294 0,0000 3,7184 0,0000
7 2,1637 0,0000 0,0000 0,0000

the action space becomes larger. When we compare the reward of the mean
message encoder and the attention message encoder we can see a clear difference.
The drop in reward is significantly larger for the attention message encoder.
Even though the attention message encoder still has the lowest performance for
24 agents, we see that the difference becomes significantly smaller. In Figure 4
we see that the attention message encoder trains slower than the mean message
encoder. Again, we see that this difference becomes larger at first but decreases
again for 24 agents.

5.6 Communication Analysis

To gain further insight in our results, we analyse the communication policy that
is learned using the mean message encoder. For this purpose we use a simple

12 Astrid Vanneste et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
value[0]

0
1
2
3
4
5
6
7
8

va
lu

e[
2]

(a) The mean values for each possible com-
bination of two messages

0 1 2 3 4 5 6 7 8 9 10 11 12 13
value[0]

0
1
2
3
4
5
6
7
8

va
lu

e[
2]

Mean Message

(b) The mean values for each possible com-
bination of two messages connected to the
message values that produced the mean
value.

Fig. 5: Messages and the mean value of the possible combinations of two messages

0 1 2 3 4 5 6 7
2

4

6

8

10

12

M
es

sa
ge

 V
al

ue

message[0]
0.083 2 + 2.026

(a) message[0]

0 1 2 3 4 5 6 7
0

2

4

6

8
M

es
sa

ge
 V

al
ue

message[2]
3.761 ln(+ 1) 0.281

(b) message[2]

Fig. 6: The actual message values in function of parameter τ compared to the
function that best approximates the data according to our regression results.

version of the matrix environment with N = 3, L = 8 and a message size of
four. Since the message size is smaller than L, the agents cannot fall back on
a one hot encoding of the labels. Table 3 shows the communication policy that
the agents have learned when they consistently achieve the goal. We see that the
agents only require two of the available four numbers to communicate the label
info. Using this communication policy we can calculate all the possible mean
values for all possible message combinations. These values can be seen in Figure
5. Here we see that each of the means is separable from the other values with
the exception of two message combinations that cause a very similar mean value.
The distance between these two mean points is 5.11×10−2. This shows that the
agents will be able to reliably determine the global state of the environment,
except in this specific case.

If we want to describe the curve of the message values in Figure 5b, we can
use a parametric equation where we describe x and y in function of a common

Scalability of Message Encoding for Cont. Comm. Learned with MARL 13

parameter τ . We choose τ in such a way that it increases as we go along the
curve. We can plot both message values in function of parameter τ . This can
be seen in Figure 6. The curves resemble an exponential function for message[0]
and a logarithmic function for message[2]. Therefore, we can write the parametric
equation of our message values as displayed in Equation 10.{

x = a · 2τ + b

y = c · ln(τ + 1) + d
(10)

We perform least squares linear regression to determine values for a, b, c and
d that will result in the curves that most closely match the message data. This
results in the following equation:{

x = 0.083 · 2τ + 2.026

y = 3.761 · ln(τ + 1)− 0.281
(11)

These regressions match our message data very well (R2 = 0.98 for the
regression of message[0] and R2 = 0.99 for the regression of message[2]). Figure
6 shows the message values in function of τ alongside the functions described in
Equation 11. In Figure 5b, we can see that the communication policy is very well
suited to result in mean values, positioned at the midpoint of the line connecting
the two messages, that can be separated from each other. By representing this
curve as a parametric equation, we have determined that each of the message
values can be represented using a different non-linear function. By learning a
representation combining an exponential function and a logarithmic function
for each of the message values, the agents were able to retain all necessary
information in the encoding that the mean message encoder generates.

6 Discussion

In our experiments, we evaluated the performance of agents with either a mean
message encoder or an attention message encoder. Across all the experiments,
we saw that the mean message encoder outperforms the attention message en-
coder. Even when the number of labels exceeds the message size, the agents were
able to find a communication protocol that achieves very good performance. By
analysing the communication protocol in a small scale experiment, we were able
to determine that the agents choose to represent the labels using a combina-
tion of an exponential and a logarithmic function. This ensures that no relevant
information is lost.

We performed two types of experiments. In the first we increased the number
of labels that the agents need to be able to communicate while in the second series
of experiments we increased the number of agents. In the results summarized in
Table 4, we see that the mean message encoder is not affected much by the
increase in the number of labels while the performance of the attention message
encoder clearly suffers. The difference in performance between the mean message

14 Astrid Vanneste et al.

Table 4: Results for the different evaluated scenarios. We show the reward nor-
malized according to the number of agents to get the reward per agent. We also
show the percentage change in average reward when going from the mean mes-
sage encoder to the attention message encoder.

No Comm. Mean Attention ∆

N = 3, L = 3 0.379± 0.025 1.000± 0.000 1.000± 0.000 0.000%
N = 3, L = 8 0.380± 0.024 0.998± 0.004 0.995± 0.006 −0.301%
N = 3, L = 16 0.379± 0.024 0.999± 0.001 0.941± 0.051 −5.806%
N = 3, L = 24 0.379± 0.025 0.993± 0.008 0.847± 0.153 −14.703%

N = 3, L = 3 0.379± 0.025 1.000± 0.000 1.000± 0.000 0.000%
N = 8, L = 3 0.149± 0.011 0.930± 0.137 0.858± 0.178 −7.742%
N = 16, L = 3 0.073± 0.006 0.564± 0.092 0.492± 0.104 −12.766%
N = 24, L = 3 0.065± 0.006 0.381± 0.091 0.363± 0.046 −4.724%

encoder and the attention message encoder keeps growing as we increase the
number of labels. However, when looking at the second series of experiments,
we see that the mean message encoder is affected by increasing the number of
agents since the action space will grow as well. We can also see that the difference
in performance between the mean message encoder and the attention message
encoder does not keep growing as we increase the number of agents.

7 Conclusion

In this work, we evaluated the difference in performance between a mean message
encoder and an attention message encoder when we increase the complexity of
the environment and the number of agents. Intuitively, the attention approach
seems the most ideal in this area since it can vary the importance of the different
incoming messages. However, in the evaluated scenarios of the proposed matrix
environment, we see that the mean message encoder consistently outperforms the
attention message encoder. We were able to analyse the communication protocol
of the agents that use the mean message encoder in a small scale scenario. The
results showed that the agents use an exponential and a logarithmic function to
avoid the loss of important information.

8 Future work

This work provides initial results that compare different message encoding tech-
niques. For a full understanding of the advantages and disadvantages of each
technique, we need to look into some more aspects of the message encoding
problem. In this paper, we focus on the comparison between the mean tech-
nique and the attention technique. However, there are more possibilities. RNN’s
and a combination of RNN’s and attention have successfully been applied in
the past [6][13]. So far, we have only looked into continuous message encoding.

Scalability of Message Encoding for Cont. Comm. Learned with MARL 15

The encoding of discrete messages poses some additional challenges. Due to the
limited number of available messages, the risk of information loss is a lot higher
for discrete communication. Therefore, in future work we want to look at more
message encoding techniques and apply these to both continuous and discrete
messages. Additionally, we also want to investigate their performance using dif-
ferent communication learning techniques. Finally, the environment used in our
work has a constant number of agents and therefore the agents will receive a con-
stant number of incoming messages at every timestep. Episodes in the matrix
environment are also only one timstep long. In the future, we want to use more
complex environments with a varying number of agents and longer episodes.

Acknowledgements

Astrid Vanneste and Simon Vanneste are supported by the Research Foundation
Flanders (FWO) under Grant Number 1S12121N and Grant Number 1S94120N
respectively.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rabbat, M., Pineau, J.:
TarMAC: Targeted multi-agent communication. In: Chaudhuri, K., Salakhutdinov,
R. (eds.) Proceedings of the 36th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 97, pp. 1538–1546. PMLR (09–15
Jun 2019), https://proceedings.mlr.press/v97/das19a.html

3. Foerster, J., Assael, I.A., De Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. In: Advances in neural information
processing systems. pp. 2137–2145 (2016)

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

5. Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega, P., Strouse, D.,
Leibo, J.Z., De Freitas, N.: Social influence as intrinsic motivation for multi-agent
deep reinforcement learning. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceed-
ings of the 36th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 97, pp. 3040–3049. PMLR (09–15 Jun 2019),
https://proceedings.mlr.press/v97/jaques19a.html

6. Jiang, J., Lu, Z.: Learning attentional communication for multi-agent coopera-
tion. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31.
Curran Associates, Inc. (2018), https://proceedings.neurips.cc/paper/2018/file/
6a8018b3a00b69c008601b8becae392b-Paper.pdf

7. Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez,
J.E., Jordan, M.I., Stoica, I.: RLlib: Abstractions for distributed reinforcement
learning. In: International Conference on Machine Learning (ICML) (2018)

8. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.:
Tune: A research platform for distributed model selection and training. CoRR
abs/1807.05118 (2018), http://arxiv.org/abs/1807.05118

https://proceedings.mlr.press/v97/das19a.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.mlr.press/v97/jaques19a.html
https://proceedings.neurips.cc/paper/2018/file/6a8018b3a00b69c008601b8becae392b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6a8018b3a00b69c008601b8becae392b-Paper.pdf
http://arxiv.org/abs/1807.05118

16 Astrid Vanneste et al.

9. Lin, T., Huh, M., Stauffer, C., Lim, S.N., Isola, P.: Learning to ground multi-agent
communication with autoencoders (2021)

10. Lowe, R., Foerster, J., Boureau, Y.L., Pineau, J., Dauphin, Y.: On the pitfalls
of measuring emergent communication. In: Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. p. 693–701. AAMAS
’19, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2019)

11. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Paul, W.,
Jordan, M.I., Stoica, I.: Ray: A distributed framework for emerging AI applications.
CoRR abs/1712.05889 (2017), http://arxiv.org/abs/1712.05889

12. Oliehoek, F.A., Amato, C., et al.: A concise introduction to decentralized
POMDPs, vol. 1. Springer (2016)

13. Peng, Z., Zhang, L., Luo, T.: Multi-agent communication with attentional and re-
current message integration. In: 2018 IEEE Symposium on Computers and Com-
munications (ISCC). pp. 00198–00203 (2018). https://doi.org/10.1109/ISCC.2018.
8538766

14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (Oct 1986). https://doi.org/10.
1038/323533a0

15. Simões, D., Lau, N., Paulo Reis, L.: Multi-agent actor centralized-critic
with communication. Neurocomputing 390, 40–56 (2020). https://doi.org/https:
//doi.org/10.1016/j.neucom.2020.01.079, https://www.sciencedirect.com/science/
article/pii/S0925231220301314

16. Singh, A., Jain, T., Sukhbaatar, S.: Learning when to communicate at scale in
multiagent cooperative and competitive tasks (2018). https://doi.org/10.48550/
ARXIV.1812.09755, https://arxiv.org/abs/1812.09755

17. Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with
backpropagation. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems. vol. 29.
Curran Associates, Inc. (2016), https://proceedings.neurips.cc/paper/2016/file/
55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf

18. Vanneste, S., Vanneste, A., Mets, K., Anwar, A., Mercelis, S., Latré, S., Hellinckx,
P.: Learning to communicate using counterfactual reasoning (2021)

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems. vol. 30.
Curran Associates, Inc. (2017), https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

20. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8(3), 229–256 (1992)

21. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing
Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/
paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

http://arxiv.org/abs/1712.05889
https://doi.org/10.1109/ISCC.2018.8538766
https://doi.org/10.1109/ISCC.2018.8538766
https://doi.org/10.1109/ISCC.2018.8538766
https://doi.org/10.1109/ISCC.2018.8538766
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.079
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.079
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.079
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.079
https://www.sciencedirect.com/science/article/pii/S0925231220301314
https://www.sciencedirect.com/science/article/pii/S0925231220301314
https://doi.org/10.48550/ARXIV.1812.09755
https://doi.org/10.48550/ARXIV.1812.09755
https://doi.org/10.48550/ARXIV.1812.09755
https://doi.org/10.48550/ARXIV.1812.09755
https://arxiv.org/abs/1812.09755
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

	Scalability of Message Encoding Techniques for Continuous Communication Learned with Multi-Agent Reinforcement Learning

