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A Brain-Computer Interface (BCI) is a device that digitises the neurophysio-
logical. By interpreting brain-generated signals, BCIs perform a variety of tasks
in both a clinical and an everyday context. Recent advances in BCI research have
allowed clinical applications such as early prediction of epileptic seizures (Young
et al., 2011; Lin et al., 2018) and spellers for the paralysed (Nijboer et al., 2008;
Townsend et al., 2010), as well as everyday applications such as intent recog-
nition for smart living (Zhang et al., 2019; Belkacem et al., 2020) and vehicle
and robot control (Aznan et al., 2019; W. Lu et al., 2020). Nevertheless, aside
from a number of specific cases, efficient and reliable BCIs are still a distant
prospect. Interperson and intraperson variability as well as data scarcity make
decoding neuroimaging modalities a complex matter. Similar challenges have
been investigated in other research fields, yielding solutions that can inspire new
BCI methods. Particularly interesting and novel in the research area of BCIs is
the self-supervised learning paradigm, originally cross-pollinated from research
areas that have access to vast amounts of unlabelled data, such as Computer
Vision (CV; van den Oord et al., 2019; Grill et al., 2020) and Natural Lan-
guage Processing (NLP; Radford et al., 2019; Devlin et al., 2019; Raffel et al.,
2020). The nontransferable nature of the current BCI machine learning state-
of-the-art has resulted in variable performance (Ahn & Jun, 2015; Lotte et al.,
2018), suggesting that research into self-supervised learning approaches could
be fruitful. Various recent works have started laying the foundation for such re-
search (Banville et al., 2019, 2021; Kostas et al., 2021). The work presented in
this thesis is part of this effort.

Transfer learning in BCIs has mostly consisted of supervised pretraining fol-
lowed by supervised finetuning. Pretraining would then consist of initialising
the weights of a deep learning model by training it on the data of a number of
participants (Dose et al., 2018; Fahimi et al., 2019) or even the runs of a single
participant (Schwemmer et al., 2018). In some cases, pretraining happens in a
completely different domain, for example, image recognition (Xu et al., 2019).
Such research can be interesting as the success or failure of such knowledge trans-
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fer can provide insight and inspiration with regards to BCI transfer learning. Re-
cent work by K. Lu et al. (2021) has found that language-pretrained transform-
ers (Vaswani et al., 2017) are surprisingly transferable to a variety of nonlanguage
modalities, such as the MNIST handwritten digit benchmark (Deng, 2012) and
protein sequence tasks, such as remote homology detection (Rao et al., 2019).
Therefore, the work presented in this thesis is to result in two types of insight.
On the one hand, inspiration can be gained towards BCI transfer learning. On
the other hand, K. Lu et al.’s claim that language-pretrained transformers are
universal computation engines is tested towards the complex task of classifying
EEG.

Explicitly, the research question studied in this thesis is as follows: “How and
to what degree can a language-pretrained transformer transfer to the classifi-
cation of EEG and does the language-pretraining influence performance?” An
attempt is made to finetune the second generation Generative Pretrained Trans-
former (GPT2; Radford et al., 2019) to a four-class EEG motor imagery classi-
fication task, namely, the Graz dataset A (Brunner et al., 2008). To investigate
whether or not and to what degree language pretraining is beneficial, the per-
formance of a frozen language-pretrained instance of GPT2 is compared to that
of an unfrozen randomly initialised instance. When kept frozen, GPT2 is able to
achieve 41.6% classification accuracy, which lies above the random assignment
mark of 25.0%. Furthermore, it is significantly better than what a randomly
initialised instance of GPT2 achieves, i.e., 26.0% (p < 0.0001). Although the
achieved performance is incomparable to the state-of-the-art, it can be concluded
that positive transfer is, in fact, possible. The unsupervised pretraining phase of
GPT2 manages to capture structure in language that is applicable to the clas-
sification of EEG. By gradually unfreezing the layers of a language-pretrained
instance of GPT2, an attempt is made at gaining more nuanced insight regard-
ing the role of the language-pretraining. While the results are not conclusive,
they suggest that some learning can take place and that future work with larger
datasets might allow for more insight as well as generally higher classification
scores.

Resources The source code accompanying this thesis can be found on GitHub3.
A summary of all results can be found on Weights & Biases4.

Acknowledgements Geraint Wiggins and Arnau Dillen merit thanks for their
guidance and support in the realisation of this work. The resources and services
used in this work were provided by the VSC (Flemish Supercomputer Center),
funded by the Research Foundation - Flanders (FWO) and the Flemish Govern-
ment.
3 https://github.com/wulfdewolf/lpt-for-eeg
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