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Abstract. Explainable AI (XAI) has gained popularity in research in
recent years since we human users like to understand why AI arrives at a
particular decision and behaves as it does. However, a recent paper writ-
ten by Miller et al. [19] has shown that most XAI models are not built
on the current scientific understanding of human explanation, let alone
tested with human behavioural experiments. In this position paper, we
argue why experimental methods derived from psychology are crucial in
advancing XAI research. In addition, by focusing on theories in folk psy-
chology, we can see what is left to be done for us to equip XAI models
with commonsense reasoning. Moreover, by looking back at the success-
ful applications of experimental psychology in engineering and cognitive
science, from Human Factors Engineering (HFE), and Human-Computer
Interaction (HCI) to Experimental Pragmatics, insights on the collabo-
ration with psychologists can be drawn in to pave the way to take XAI
research to a whole new level.

Keywords: Explainable artificial intelligence (XAI) · Experimental psy-
chology · Folk psychology · Commonsense reasoning

1 Introduction: Social Insights in Explanation

Explainable artificial intelligence (XAI) has recently experienced a surge of at-
tention as researchers and practitioners strive to make their algorithms more
transparent. Miller’s influential paper [18] directed the attentions of XAI re-
search to social insights in explanation. Since much XAI research focuses on
explicitly explaining decisions or actions to a human observer, it should not be
controversial to suggest that observing how humans explain things to one an-
other can be a useful starting point for building XAI. However, it is fair to say
that the vast majority of work in this area is based solely on the researchers’ as-
sumptions about what constitutes a “good” explanation. Extensive and valuable
research in philosophy, psychology, and cognitive science on how people define,
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generate, select, evaluate, and present explanations contend that cognitive biases
and social expectations are used during the explanation process. Miller’s paper
[18] argues that the field of explainable artificial intelligence can build on exist-
ing research and reviews relevant papers from philosophy, cognitive science, and
social psychology. Indeed, as Miller and his colleagues pointed out in 2017 [19],
the majority of XAI models are not based on current scientific understanding
of human explanation, let alone tested with human behavioural experiments.
Miller [18] concluded that the following four social insights should be considered
in XAI models:

– why-questions are contrastive;
– explanations are chosen (biasedly);
– explanations are social; and
– probabilities do not matter as much as causal links.

In recent years, social insights in explanation research have evolved at a
breakneck pace. As an example, Kirfel et al. [12] investigated how humans com-
municate with causal explanations in order to clarify the distinct roles that
normalcy and causal structure play in causal judgement and pave the way for
a more comprehensive explanation of the causal explanation. They provide evi-
dence that causal explanations routinely reveal much more than this fundamental
information, in addition to providing a communication-theoretical account of ex-
planation that makes precise predictions about the kinds of inferences people will
make from other people’s explanations. However, our position paper does not
aim to provide an update on research progress since Miller’s paper was published
[18]. On the contrary, we will dig deeper into the social aspect of explanation
and argue why experimental methods derived from psychology are critical for
advancing XAI research.

One thing we want to be upfront about regarding this position paper: we are
not suggesting that current XAI researchers should abandon their approaches.
On the contrary, the advancement of XAI models is critical to the overall progress
made in this field. Without these models, it is impossible for the field to progress.
This position paper simply emphasises that certain challenges and problems in
XAI research cannot be solved solely by developing AI models. By bringing this
issue to light, we hope that all XAI researchers will recognise the limitations of
their model-building focus and, whenever possible, invite experimental psychol-
ogists to participate in model testing.

Miller’s paper [18] established that human explanation and reasoning are
inherently social, but what exactly is “explanation”? Lombrozo [14] defines ex-
planation as a process as well as a product. Meanwhile, Miller [18] contends that
there are two processes in play in addition to the product:

– Inferential process 1 — It is an abductive inference process used to fill a
gap in an explanation for a specific event. In social science, the process of

1 The inferential process is originally named as the cognitive process by Miller [18]. To
avoid confusion with cognitive models introduced in the later section of this paper,
it is renamed as the inferential process.
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determining the causes of a specific phenomenon is known as attribution,
and it is only one step in the overall explanation process.

– Product — The product of the inferential explanation process is the expla-
nation that results from the process.

– Social process — The goal of the social process, which typically involves
group interactions, is to transfer knowledge between the explainer and the
explainee so that the explainee understands the causes of the event.

Given the emphasis on the social aspect in the explanation, it should come as
no surprise that human-agent interaction, the field in which XAI research is
located, is actually a convergence of social science (e.g., psychology), artificial
intelligence, and human-computer interaction [18]. In the remainder of the paper,
we will first introduce related folk psychological theory on explanation (sections
2 and 3), and then we will discuss the historical relationship between psychology
and engineering (section 4). By discussing its contribution to human-computer
interaction research (section 5), we discuss the effort in formalising folk psycho-
logical theory for computational use (section 6), as well as how psychology has
successfully transformed its neighbouring fields (section 7).

2 Cognitive models vs Inferential theory

The main goal of this paper is to encourage XAI researchers to collaborate with
experimental psychologists. In fact, our call to action is not the first of its kind.
Taylor and Taylor [27] made a similar call for the involvement of experimental
psychologists in XAI research in their article “Artificial cognition: How experi-
mental psychology can help generate explainable artificial intelligence” in 2020.
As Taylor and Taylor [27] clearly demonstrate, deep neural network-based ar-
tificial intelligence has developed to the point where it can be challenging or
impossible to explain how a model comes to its conclusions. This black-box
issue is particularly troubling when the model makes judgments that have a
potential impact on people’s well-being. This is also what motivates the XAI re-
search, which tries to improve machine learning’s interpretability, fairness, and
transparency. Taylor and Taylor [27] argue that the experience of cognitive psy-
chology dealing with the mind’s black box by means of experimental research
makes it clear that cognitive psychology can contribute to the development of
XAI. They argue that in order to increase explainability, the principles and stan-
dards of experimental cognitive psychology should be applied when investigating
artificial black boxes. One of the pillars of experimental cognitive psychology is
that the goal of an experiment is to falsify the null hypothesis or competing
hypotheses. With this process, theories can be developed and refined. So look-
ing for reasonable counter-explanations for models is crucial. Furthermore, using
standardised tasks, looking carefully for variations in the outcome and finding
boundary conditions are other examples of their many recommendations inspired
by experimental cognitive psychology. Although extremely useful and relevant,
Taylor and Taylor’s paper [27] focuses on one of the two modes of improving
AI explainability — by making the content of the AI cognitive models more
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interpretable. The other — equipping AI models with inferential theory — will
be the focus of this paper instead.

What is the difference between inferential theory and cognitive models? Ac-
cording to Gordon and Hobb’s book [8], computational cognitive models and
inferential theories are the end results of two very different lines of research. The
book provides examples of how cognitive models and inferential theory differ
from one another. On the one hand, cognitive models are developed by cogni-
tive scientist to advance the study of human cognition, i.e. the study of how
people — as cognitive agents — think. In the case of AI, for example, cognitive
models are used to support the development of robotics. On the other hand, in-
ferential theories are developed — mostly by cognitive agents themselves — to
explain how they think about something, the knowledge that underpins the cog-
nitive processes of explanation and prediction. The analogy in AI for inferential
theories would be the knowledge representation research. This distinction can
be difficult to understand when inferential theories are concerned with cognitive
processes. A specific computational cognitive model may share many conceptual
similarities with inferential theories of folk (commonsense) psychology. The real
difference between these two classes of models is in the methods used to evaluate
them. For example, a cognitive model of human emotions and an inferential the-
ory of human emotions may address the same mental states and processes and
may even use some of the same terminology, logic, and constructs. A cognitive
model of human emotions will be evaluated based on how well it replicates em-
pirical data on emotional behaviour in people. The effectiveness of an inferential
theory of human emotions is determined by how well it simulates the hypotheses
and justifications that people come up with when thinking about human emotion
behaviour.

Typically, Marr’s level of analysis [16] is used to study cognitive models,
which has three levels and each has its own question(s):

– Computation — what issues does it address or resolve?
– Representation & Algorithm — how does the system carry out its functions?

Specifically, how does it construct and manipulate representations, and what
representations does it use?

– Implementation — how is the system actually implemented, i.e. what is the
process of moving from abstract thought to actualized behaviour?

In practice, because most computational languages, even declarative ones, are
mono-inferential, or based on only one type of inference, representation and
algorithm are typically viewed as complementary. Due to the mono-inferential
features of computational languages, it is difficult to reuse representations of
the same information because different inference engines typically have their
own specialised computational languages. The Knowledge Base (KB) paradigm
proposed by Denecker and Vennekens [4] is motivated by this concern about
knowledge reusability. The KB paradigm strictly separates informational con-
cerns (such as knowledge representation) from problem-solving concerns (i.e.
from goals to plans and execution). A knowledge base system provides various
inference techniques and allows information to be stored in a knowledge base.
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Fig. 1. Marr’s level of analysis versus Pearl’s ladder of causality, connected with Over-
ton’s structure

These inference techniques allow the same knowledge base to be used to solve
a variety of tasks and problems. By itself, the knowledge base cannot be run or
executed because it is neither a programme nor a description of a problem. It
is just information. However, this information can be used to solve a variety of
problems. As a result, the KB paradigm is multi-inferential [29].

In contrast to Marr’s level of analysis [16], which examines a system’s be-
haviour based on its internal processes, Pearl’s ladder of causality [22] proposes
various modelling rungs from data to theory:

– from “Seeing” — i.e. one object is associated with another if the probability
of observing one changes the probability of observing the other

– and “Doing” — i.e. this level asserts specific causal relationships between
events)

– to finally “Imagining” — i.e. the highest level, counterfactual, involves con-
sideration of an alternate version of a past event, or what would happen
under different circumstances for the same experimental unit.

We hypothesise that the ability to imagine helps humans develop inferential
theories of how people think. Using Overton’s explanation framework [21] men-
tioned in Miller’s paper [18], we also propose the following link between Marr’s
level and Pearl’s ladder (see figure 1). “Model” — which can refer to any rung of
Pearl’s ladder — models “Kind” which is instantiated by “Entity” with Marr’s
level. In abstract thought, “Theory” — at the top of Pearl’s ladder — can be
used to support modelling at each rung, whereas “Data” — at the bottom of
Pearl’s ladder — is a measurement of the “Entity” in reality. Moving up Pearl’s
ladder from one rung to the next requires explicit thought. In contrast, once
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various Marr’s levels are specified, the analysis in each level, i.e. computation,
algorithm and implementation, can be carried out automatically. This is consis-
tent with psychology’s dual process theory [6], where we can draw the analogy
between Pearl’s ladder and System 2 — an explicit, controlled, and conscious
process — and between Marr’s levels and System 1 — an implicit, automatic and
unconscious process. Human inferential theory falls under System 2 because it
explicitly models and speculates on the mental states of others. In the following
section, we will go over how inferential theory leads to human explanation.

Before proceeding to the next section, we should note that a recent Robotics
Reasoning Architecture by Sridharan and Meadows [25] also exhibits this dual
process nature. The architecture is envisioned as a collaboration between a statis-
tician (focus on behaviour with automatic nature, i.e. System 1) and a logician
(focus on thought with controlled nature, i.e. System 2), combining the com-
plementary strengths of declarative programming, probabilistic reasoning, and
relational learning. It represents and explains the world and the robot’s under-
standing of it at two granularities. A fine-resolution description of the domain
is reasoned about using non-monotonic logic and is close to the data obtained
from the robot’s sensors and actuators, whereas a coarse-resolution description
of the domain includes common sense knowledge. Despite the fact that Sridha-
ran and Meadows’ architecture does not use a single unified logical-probabilistic
representation, it establishes and precisely defines a tight coupling between the
representations at the two granularities, allowing the robot to represent and rea-
son about commonsense knowledge, and what it knows (or does not know), and
how actions affect the robot’s knowledge. A conversation between a logician and
a statistician, as well as their physical and mental actions, are interpreted as
exemplifying how the two types of knowledge interact with the corresponding
reasoning techniques.

3 Folk Psychology: Turing test & Malle’s theory of
human explanation

In the previous section, we have introduced the concept of inferential theory
which describes the way that people think about something. What if that some-
thing is the way how one thinks? Then we enter the realm of folk psychology
(aka commonsense psychology), which is the study of the human capacity to ex-
plain and predict the behaviour and mental state of other people. Interestingly,
we use this capacity not only on humans but sometimes on inanimate things
as well, including machines, to act like machines could think. We will discuss
this anthropomorphic use further in section 6. Nevertheless, we can still tell this
machine thinking is just a pretence created by our own thought. But what if
machines are intelligent enough and act in such a way that we can no longer tell
the difference?

In fact, this machine intelligence question inspired Alan Turing’s article
“Computing Machinery and Intelligence,” which launched the field of artificial
intelligence in 1950 [28]. Turing devised the “Turing Test,” a hypothetical test
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in which he first defined intelligence as a human judgement before describing
the test itself: Is it possible for a computer to fool someone into thinking it is
a real person? Gorden and Hobb rephrase this question by removing the aspect
of misdirection: “Does this computer operate the way people think they think?”
[8].

All folk explanations of others’ behaviour use the implicit theories about their
beliefs, objectives, plans, and emotions. This kind of explanation is also known
as social attribution. How do we make social attribution? Miller [18] asserts that
Malle’s model [15] is the most developed and comprehensive social attribution
model to date. Traditional explanations for human behaviour, in various forms,
are based on Malle’s concept of intentionality and its essential elements of belief,
desire, and intention. In general, for an action to be deemed intentional, all
five elements of the intentionality concept must be present: the agent’s desire
for the outcome, belief that the action would produce the desired outcome,
intention to carry out the action, skill to carry out the action, and awareness
of achieving the intention while carrying out the action. Reason explanations
are the main method used to explain intentional behaviours. They contain the
justifications for an agent’s intentions or deliberate actions. Reasons include
background beliefs or desires that are informative and that relate to the desire
and belief elements of intentionality. Contrarily, unintentional behaviours are not
the result of intentions or belief-desire reasoning; rather, they can be attributed
to a wide range of factors, including physiology and culture [15].

It is common practice for us to anthropomorphize machines as if they have
intentions, which is not surprising given that we do the same thing with animals
and even inanimate objects. In fact, we have programmed the machine in such
a way that its imperative procedures reflect the designer’s or user’s intention,
which is frequently — and perhaps incorrectly — referred to as the machine’s
intention. In other words, we have made ourselves think that machine has its own
intention. Since the explanation given by XAI are intended to assist humans in
better understanding the actions of AI, humans may hold AI explanations to the
same standard as human explanations. What kinds of things do humans consider
to be reasonable? What does the human consider to be a valid and objective
explanation? These questions are what we believe pushes XAI research from the
realm of computer science to the realm of psychology, as psychology has been
studying the human mind — including human judgement — for decades. In the
next section, we start looking at the history of psychology and identify the root
of the collaboration between psychology and computer science.

4 Engineering roots in Psychology

What is psychology? Psychology is the study of the human mind and human
behaviour from their physiological basis (biopsychology), the process of infor-
mation (cognitive psychology), individual characteristics (psychology of individ-
ual differences), response to social settings (social psychology) and well-being
(psychopathology and health psychology) towards how they develop in life (de-
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velopmental psychology) and evolve through history (evolutionary psychology).
Although psychology has a long history (already the Greek philosophers were
asking psychological questions), it is only in the nineteenth century that psy-
chology became an independent science in which experimental data collection
was crucial. In Germany, Gustav Fechner theorized in 1954 about judgments of
sensory experiences and later conducted some experiments. Some year later, Wil-
helm Wundt founded the first Psychology Laboratory. Around the same time,
William James started a small experimental psychology laboratory, which was,
however, mainly used for demonstration purposes [3].

One of the motives for developing these laboratories can be traced back to
engineering, and more precisely a practical concern with optical technology (see
Wilson et al., 2012) [31]. Indeed, in the beginning of the 19th century, it was
recognized that observations by astronomers are not that straightforward and
are influenced by individual differences. This interest started after a clash in
the Royal Observatory in Greenwich between two astronomers. The assistant
astronomer Kinnebrook reported systematically different times at which a star
crossed the marker in a telescope than the Royal Astronomer Maskelyne did.
This clash inspired research that led to the discovery of the personal equation:
there is an inherent bias in individual measurements and observations [23]. The
personal equation turned out not only to be important for astronomy, but also for
other commercial and military operations, and became the topic of investigation
in the labs of Wundt and James [31].

Given the engineering roots of psychology, it is no surprise that engineering
psychology (aka human factors engineering) — the science of human behaviour
and capability, applied to the design and operation of systems and technology,
e.g. human-machine interaction — originated from within experimental psy-
chology soon after psychology emerges as an academic discipline. The two world
wars played an important role in this field. Failing weapons and wrongly dropped
bombs had not only technical causes but also human errors were causing them.
Experimental psychologists helped not only to understand these mistakes but
also to find solutions. For instance, the noise levels in military aircraft turned out
to be one of the causes leading to human errors and psychologists Stevens and
Beranek developed improved microphones and earphones for communication in
airplanes. Such collaborations between different fields of science (natural science,
engineering, psychology) grew after World War II and improved man-machine
interactions considerably, but also enhanced the development of theories in psy-
chology itself. Signal detection theory for instance is a nice example of these
efforts [5].

To summarise, the birth of psychology can be traced back to solving an
engineering problem: the interaction between humans and technology. In the
next section, we will focus on human interaction with a specific type of machine
— computers.
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5 Interaction with machines: From operations to
communication

Human-computer interaction (HCI) is a field of study that focuses on the in-
terfaces that humans use to interact with computers. Researchers in HCI study
how people use computers and develop technologies that let people use them
in fresh ways. Human-computer interaction is a research area that straddles
a number of academic disciplines, including computer science, psychology, de-
sign, media studies, and behavioural sciences. The phrase HCI is popularised In
Card et al. ’s 1983 book “The Psychology of Human-Computer Interaction” [2].
The term is meant to convey that, in contrast to other tools with specific and
constrained uses via operations, computers have a wide range of uses, many of
which involve an ongoing conversation between the user and the computer via
communications. The idea of dialogue compares human-computer interaction to
interpersonal communication, which is an analogy that is essential to the field’s
theoretical foundations, as well as the shift from the operation of machines to
the communication with them.

Carbonnelle et al’s work [1] on interactive consultants is one instance with
a focus on communication with machines. In their interaction, the user and the
system jointly construct a model of a given knowledge base, i.e. a situation that
satisfies all of the constraints in the knowledge base. Additionally, the user can
ask the interactive consultant to explain how it comes its conclusions. It then
lists the user-provided pertinent data about the specific circumstances as well
as the laws from the knowledge base that led to the derivation. According to
various psychological research [20][13][17], people reason more effectively when
collaborating with others as they receive immediate feedback in this setting.
We speculate such benefits will also be seen in human-machine collaboration
if the machine can provide immediate feedback, like Carbonnelle’s interactive
consultants.

There is no doubt that there is a better way than just following the human-
machine interaction tradition to create human-computer interfaces, according to
many researchers, experts and practitioners in the computer field. Sadly, they
cannot agree on what it is. Some people consider it obvious that psychological
knowledge should be used. In the words of Hansen, [10], their motto could be
“Know the user!”. But when it comes to talking about how humans interact
with technology, it is frequently assumed that all one needs are ways to make
sure that the obvious is not missed; “All we need from psychology is a few good
checklists!” might be the catchphrase in this case. However, Card et al. assert in
their book (1983) that checklists cannot capture all aspects of human-computer
interaction [2].

Engineering psychology suggests that psychology should be involved in the
design of the user-computer interface. It is because the success of psychology
in improving the flyability of airplanes leads us to believe that improving the
usability of computers through the same psychological attention to human per-
formance is possible. Engineering psychology, or human factors engineering, has
excelled at evaluation. With a real system, one can produce a judgement via an
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experiment. The methodology of experimental design, supported by concurrent
expertise in experimental control and statistics to assess the results, has thus
been the main tool in the human-factors toolbox. The emphasis on evaluation
is widespread, e.g. evaluating social action programs is the focus of a whole
subfield of psychology. Whether it is concerned with clinical evaluation or in-
telligence testing, the testing movement is fundamentally evaluative in nature
[2].

Following the insights gained from prior work, Sridharan & Meadows [26]
have identified the following guiding principles or claims to support explanations
in human-robot collaboration:

1. Appropriate — At a suitable level of abstraction, explanations should present
context-specific information pertinent to the domain, task, or question at
hand;

2. On-demand transparency — Online descriptions of decisions, justifications
for decisions, knowledge, beliefs, experiences that shaped the beliefs, and
underlying strategies or models should all be available in explanations;

3. General-purpose components — There should be as little task- or domain-
specific content in explanation generation systems as possible;

4. Human in the loop — Systems that generate explanations should take into
account human comprehension and feedback to guide their decisions.

5. Non-monotonic reasoning — Systems for generating explanations should
make use of knowledge components that allow for non-monotonic revision
based on observations made right away or later, as a result of active explo-
ration or the execution of reactive actions.

Concepts behind most of the aforementioned guiding principles are discussed
in one way or the other throughout our paper. (1) We can see the first princi-
ple is similar to the cooperation principle when human agents are involved in
the conversation, i.e. following the four goals: be truthful, say just enough, stay
relevant and be clear. These cooperation principles, also known as Gricean Max-
ims [9] in pragmatics — a linguistics subject that studies the use of language
and how context contributes to meaning. In section 7, we will explore how ex-
perimental psychology transforms the study of pragmatics. (2) Meanwhile, the
on-demand transparency principle is following the motivation behind the surge of
XAI research and hopes to mitigate the lack of transparency and interpretability
issues in current popular black-box models e.g. artificial neural network (ANN)
and deep learning. (3) The general-purpose components principle is addressed
by the knowledge-based paradigm discussed in section 2, as it aims to move
beyond the mono-inferential knowledge representation in declarative languages.
(4) Human-in-the-loop is an important principle, which we will discuss further
with a focus on the accommodation of human anthropomorphic tendencies in
the next section. (5) Finally, humans mostly rely on non-monotonic reasoning,
but this discussion is outside the scope of the current paper.

The takeaway message from the development of the HCI study: only having
a checklist of social insights are not enough, we also need to keep human in the
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loop! To do so, we need human evaluation and this can be done via enlisting the
help pf psychologists, which is further discussed in section 7.

6 Difficulties in anthropomorphic computing: the lack of
psychological understanding

In section 3, we briefly mentioned the human tendency to anthropomorphise
objects as if they have intentions even though we know they do not. Nevertheless,
personal computers today are still created using a totally different metaphor.
Despite the points of attention on HCI that were already written down almost
four decades ago [2], Gordan & Hobbs [8] have argued that most developers to
date still want users to treat computers like office space rather than as living
beings. They list out three major sources of discordance we are still facing in
human-computer interaction:

– The first major source of conflict is that computers are unable to meet or
even acknowledge our commonsense psychological expectations.

– The poor understanding that computers have of their users is a second source
of disagreement. Though personalization and user modelling are increasingly
common in modern computing systems, few make an effort to take user
behaviour into account outside of what is immediately observable.

– The third point of discordance, which is possibly the most troubling, is that
computers have little to no ability to comprehend human language related
to psychology (e.g. thinking, feelings, emotions), despite the fact that it is
crucial to human-human communication.

We suspect most of the current Human-AI interactions still follow similar dis-
cordances.

To respond to these discordances, an engineering strategy called anthropo-
morphic computing is devised. The main tenet of this strategy is that computa-
tional systems should support their users’ anthropomorphic tendencies by acting
in a way that fits their realistic psychological models. Computational systems
will inevitably be regarded by humans as having intentions, objectives, beliefs,
expectations, and emotions. Instead of using engineering models that are used
in the architectural design of computing hardware and software, AI will logically
predict and explain the reasoning behaviour of computational systems using the
same commonsense psychological models that are used by humans to predict
and explain human reasoning behaviour. Human users will be able to apply
their commonsense psychological models to their computers with verisimilitude
if computational systems’ reasoning behaviour is aligned with common sense
psychological models. [8]

One popular counterargument against anthropomorphic computing is that
computers would have to do their computation following the human reasoning
style, which is known as full of irrational bias and less optimal. Like airplanes
do not need to fly like birds, computers do not have to think like a human.
But in order to communicate efficiently with humans, they need to know how
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humans think. We, humans, understand how computers think, but we do not
think like a computer. We can act like it, but most of the time we do not
think like a computer. But by understanding how computers think, we can tell
computers what we would like them to do. If a computer is able to understand
how humans think and give human-friendly communication accordingly, then the
people that the computer communicates with do not have to understand how the
computer thinks in order to understand the communication. Using Gordan &
Hobbs’ example [8], a computer which successfully adapts an anthropomorphic
strategy should be able to make a human reasoning style statement — “Let me
think through this a bit more slowly. I want to make sure I can remember it
later.” — instead of a computer reasoning style statement — “I am reducing
the memory cache size by 128 megabytes to free up space on the hard drive”.
However, the computer does not have to use human reasoning all the way to
achieve this response.

Anthropomorphic computing is fundamentally about giving computers an
explicit awareness of the commonsense psychology model that is being applied
to them, as well as the ability to reason about this model in support of human-
computer interaction, as opposed to mirroring human-like reasoning in machines.
Here, it is important to make sure that everyone participating in the interaction is
using the same model. This model is an implicit commonsense theory of human
psychology that applies to people. It needs to be explicitly represented in a
formalism that is algorithm-friendly for computers, i.e. find a representation that
is expressive enough for AI to reason about while being simple enough for human
users to understand [8]. Horstman and Krämer [11] concluded on the basis of
semi-structured interviews and a quantitative online study that not surprisingly
people expect social robots to make their lives practically easier (e.g., by assisting
with domestic or professional duties), but that they do not expect them helping
with social activities. However, when asked about their preferences, the same
participants bring up interpersonal and emotional skills more frequently than
technological skills, and they express a yearning for empathetic social robots.
In other words, and important for our point, at the moment there seems to
be an interesting tension between on the one hand people’s expectations about
social robots (which focus on technological characteristics) and on the other
hand people’s preferences (which focus on emotional and social characteristics).

In order to successfully implement the anthropomorphic computing for co-
operation and communication with people, we need to logically formalise folk
psychology so that those folk inferential theory can be represented in the AI
system. An informal attempt in finding axioms behind commonsense psychology
is done by Smedslund in his book (1997) [24], “The structure of psychologi-
cal common sense.” Inspired by Smedslund’s work, Gordan & Hobbs have been
researching the logical formalisation of commonsense psychology in support of
artificial intelligence that is similar to humans. In their recent book [8], they
provide fourteen hundred first-order axioms of logic organised into twenty-nine
theories and sixteen background theories, using formal logic to encode the entire
breadth of psychological words and phrases. Future work might need to explore
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further to see if human treats intelligent AI robots as if their equals. For ex-
ample, Weisma (2022) [30] has argued that human reasoners must consider two
ontological questions in order to make sense of robots or any other entity:

– Which kind of thing is it?
– And what causal factors influence it?

Each question focuses on a different aspect of how robots are extraordinary —–
though not exceptional —– entities for the human cognitive system. She provides
a new theoretical framework for comprehending conceptual change at both the
individual and cultural-historical levels by meditating on the dynamic interplay
between these two questions. To summarise, research on formalising folk psy-
chology theory has made decent progress but further research is still warranted
to ensure such theory, built on human interaction dynamics, is applicable to the
dynamics between humans and robots.

7 Verification of one’s intuition with behavioural
experiments

Relying on one’s intuition to build new models and even use them as justification
is nothing new. In fact, in the early development of psychology, introspection has
been used as an inquiry method to study the mind. Wundt, for instance, devel-
oped a rigourous method in order to make it as reliable as possible. Notwith-
standing these efforts, it remained criticized as subjective and unreliable. As
a reaction, behaviourism not only promoted the use of experimental methods
instead of introspection but also rejected the study of mind altogether as it is
not directly observable and therefore not testable. Does it mean the endeavour
of studying the mind is futile and we should only study behaviour? Not quite.
These two camps pitch psychology as the study of behaviour against the study
of the mind, but the quarrel has been “resolved” by the cognitive revolution in
psychology which focuses on the study of cognitive mechanism, since it is as-
sumed that behaviour is driven by an internal process. However, as we pointed
out earlier, the study of cognitive models is different from the study of infer-
ential theory, as the former can be seen as behaviour-driven and the latter can
be seen as thought-driven. Following the cognitive revolution in psychology, it
is possible to use human behavioural experiments to test models built on one’s
introspection and intuition [3].

While psychology has rejected the use of introspection (and intuition) as
justification in what is right and what is wrong, other cognitive science fields
such as linguistics and philosophy still rely upon it heavily as justification for
their theory to this day. One point we would like to emphasize here is that there
is nothing wrong with relying on one’s own intuition to develop a model. In
fact, our point of view is that it is actually beneficial to do so as it can give rise
to ingenious and creative solutions to our scientific inquiry. However, it should
be complemented with a method to verify those intuitive claims rather than
saying that “it is obvious” or “it is commonsense” as justification or evidence.
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In this regard, we can learn from the experience of how experimental psychology
transformed pragmatics.

Over the course of its young history (about 40 years, see e.g., [7]), experimen-
tal pragmatics has experienced several changes. The study of pragmatic meaning
by psychologists started around 1970. These psychologists came from different
subfields, like those interested in developmental psychology or psycholinguistics,
and used their experimental methods to investigate the use and understand-
ing of language in context. In the spirit of cognitive science, collaborations be-
tween different disciplines turned out to be very fruitful. Linguists, logicians, and
philosophers were for instance often the suppliers of inspiration and hypotheses,
which then were experimentally tested by psychologists. This endeavour showed
that the often heard claim that pragmatics is the wastebasket of linguistics and
therefore an impossible topic for scientific investigation was ill-founded [7].

To conclude, since experimental pragmatics has successfully incentivized re-
search from researcher’s intuition to human behavioural experiment, it is reason-
able to believe that we can still find human behavioural testable hypotheses on
the current work of AI/XAI, even if the researchers who develop those models
do not have those hypotheses in mind.

8 Conclusion: Human in the loop!

In this paper, we have seen the folk psychology concepts focus on the social
aspects of human interactions. Humans have a tendency to anthropomorphise
machines and AI, even though we know fully that they do not have intentions,
because it helps us to navigate the world with the reasoning style that we are
most familiar with. So it makes sense to make AI more “human-like”. But how
are we going to do that? The early work on human-computer interaction has
already pointed out that having just a checklist — in our case, a checklist of what
constitutes a good explanation in the eyes of humans — is not good enough,
we also need to evaluate AI models with human subjects. It does not mean
we — AI scientists with mainly computer science training — should not build
models based on our own intuition. Nevertheless, we should be vigilant and avoid
basing the justification for the AI model solely on one’s intuition. Also, we should
invite experimental psychologists to help us out with testing human judgements
on our models if possible. After all, psychologists have been researching human
behaviours for decades and they do have a successful track record in transforming
their sister fields in cognitive science.
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