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Abstract. Bestand Bodemgebruik is a file wherein the Netherlands is
split up into many polygons, each polygon labelled with the most com-
mon type of land use for that specific area. This file is created by Statis-
tics Netherlands only every few years. Data from many different sources
must be manually studied and combined into a single new file and this
takes considerable time. In this paper we apply a Siamese Convolutional
Neural Network to the task of detecting changes of land use from one
year to another using aerial imagery for those two years. The network’s
predictions point the creators of the Bestand Bodemgebruik towards ar-
eas that are highly likely to have changed, which allows them to work
more efficiently. Our experimental results show that changes can be de-
tected with accuracies varying from 68% to 90% for three different (and
often mutating) land use classes.

Keywords: Siamese- and Convolutional Neural Networks · Earth Ob-
servation Data · Change Detection of Land Use

1 Introduction

Bestand Bodemgebruik (BBG) is a file containing digital geometries with infor-
mation about the land use of the Netherlands for a given year. The country is
split up into many polygons, each polygon labelled with the most common type
of land use for that specific area. This file is created by Statistics Netherlands
only every few years. Data from many different sources must be manually stud-
ied and combined into a single new file and this takes considerable time. Some
examples of sources are the previous BBG, aerial images and the official land
registry.

The creation of the BBG could be accelerated by the application of Deep
Learning to aerial imagery. We recognize two different approaches, namely (1)
a direct classification of the land use or (2) do a binary classification if land
use for a particular area has changed or not. The current BBG has 38 different
land use classifications, with a main focus being on change detection. Therefore,
the second approach seems more intuitive. Direct classification could however
definitely still be considered at a later stage.

Siamese networks haven been successfully applied to the task of change de-
tection, whereas Convolutional neural networks have achieved state of the art
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Fig. 1. A visual representation of a Siamese network. Image taken from
https://towardsdatascience.com/change-detection-using-siamese-networks-fc2935fff82

results on image classification. Therefore, we apply a Siamese Convolutional
Neural Network (SCNN) to the task of detecting changes of land use from one
year to another. The input for the network are aerial imagery for those two years
labeled with either changed or unchanged. Our experimental results with SCNNs
show that changes can be detected with reasonable to high accuracy for three
different (and often mutating) land use classes. The network’s predictions point
the creators of the BBG towards areas that are highly likely to have changed,
which allows them to better prioritize their workload and work more efficiently.

In the remainder of this paper, we will first discuss related work on change
detection. We will next describe our methodology in more detail in Section 3.
In Section 4 the experimental setup and results are discussed. We finish with
conclusions and ideas for future work.

2 Related Work

Change detection is a technique of recognizing temporal changes based on images
acquired at distinct times. This is extensively used in many real-world applica-
tions [5]. In particular Deep Learning (DL) algorithms based on convolutional
neural networks have been proven to be the state of the art when working with
image data [4, 6]. DL is a specific domain of Machine Learning (ML) and is
inspired by the information processing patterns found in the human brain. It
requires a large amount of data to map the input to a desired output [1]. It
has the ability to automate the learning of feature sets for several tasks and it
enables learning and classification to be achieved in a single shot [1].Their abil-
ity to automatically derive complicated, hierarchical, and non-linear features
from raw data allows them to overcome several limitations present in traditional
change detection methods [5]. Their performance, however, is highly dependent
on both the size and quality of the data set. Small sets of training data are
unlikely to perform well [5, 4]. Nonetheless, preprocessing of the images before
inputting them into the network may have significant benefits on the outcomes
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[5]. Transfer learning is another commonly used method in change detection and
its pre-trained structure allows for good results even with a small sets of training
data [6].

Convolutional Neural Networks (CNNs) are a specific approach of DL that
are widely used for solving complex problems [2]. They are most commonly ap-
plied to analyze visual imagery as they require relatively little preprocessing and
they automatically detect the significant features without any human interven-
tion [1]. In this work, we use pre-trained convolutional models.

CNN can be used to directly classify images (e.g, predict the type of land
use), but as mentioned before, in this paper we aim to detect changes in images
made at distinct times. As images from both years are needed in order to infer
change from one year to another, both images should be simultaneously put into
the network. The vanilla CNN architecture does not support this and therefore
a Siamese network architecture is used. A pure-Siamese structure consists of two
convolutional sub-networks that share weights and convert both inputs into a
single output by identifying common features in the data at various levels [4, 6]
(see Figure 1). This structure will be discussed in more detail in Section 3.2.

In the next Section we will explain in more detail the learning task addressed
in this research, the data preparation steps involved and finally discuss the rel-
evant parts of the chosen network architecture.

3 Methodology: change detection of land use

The encompassing learning task is to detect changes in land use based on aerial
imagery for two different years. We may therefore choose to train the SCNN to
detect any change (potentially 1369 distinct transitions between land usages).
The goal of CNNs in particular is to derive (high level) patterns in images (e.g.,
forest turning into buildings may produce a distinguishable pattern for CNNs
to discover). Intuitively, training a network to find patterns for any transition
of land use seems as a daunting task. Therefore it was decided to simplify the
learning task to ensure optimal performance. We train a separate model for each
class of land use and only input images that initially contain this class. As for
example, we train a model for detecting changes in ”forest”. The input then
are images of two distinct years, where the image in the first year includes a
polygon classified as ”forest”. If the polygon in the second year is still classified
as ”forest”, the resulting label (i.e., output) for the network is ”unchanged” and
”changed” otherwise.

Figure 2 shows the mutations between (most frequently changing) land uses
in the Netherlands based on the BBG in 2015 and 2017. We are looking for the
classes that show the biggest number of changes. This is to ensure that we have
enough data to run experiments. Additionally, predicting change in classes that
are likely to change should be more useful for the creators of BBG at Statistics
Netherlands compared to predicting change in classes that barely mutate. Both
building sites and other agricultural usage classes are shown to change quite
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Fig. 2. A matrix of changes between the different classes of land use for the years
2015 and 2017. For simplicity, only the classes with significant amounts of changes are
included. The y-axis denotes the class in BBG-2015, the x-axis the class of the same
polygon in BBG-2017

.

often and are therefore used in the experiments. Additionally, we use the forest
class as this is deemed the easiest example to visually detect changes for.

3.1 Data preparation

The aerial images of the Netherlands were first stored as squares each covering
500 by 500 metres of the Netherlands with 25 centimeters per pixel. Deep Learn-
ing networks require fixed size inputs, so this step is mandatory. We then created
a separate dataset for each class we are currently considering. In order to achieve
this, we have selected all the 500 by 500 metres squares which contain the desired
class in the BBG-2015. A 500 by 500 metre square may contain several polygons
of different land-use classes. For that reason we masked our images such that
only the polygons belonging to the class are visible in the images of both years,
this means that all other pixels are turned black. So far, we are not yet dealing
with changing seasons and weather, as all images are obtained at once for each
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year. Although taking into account these challenges might be something to work
on in the future.

In order to train the network, the data must be labelled. Since we have the
BBG of both 2015 and 2017, we can easily check each polygon to see whether
the land use class is the same for both years. In the case where there is no
change in class between both years, the image pair is given the label 1. This is
common practise for change detection with Siamese networks, as both classes
are the same and both images therefore belong to the same class. For the same
reasoning, image pairs for which the classes differ are assigned the label 0. These
labels seem counter intuitive at first, but are consistent with the contrastive loss
function which will be explained in detail in Section 3.2.

A common problem is that in many real-world applications, the class distri-
bution within the data is highly imbalanced, increasing the difficulty as there
will often occur a bias towards the majority class resulting in recurring miss
classification of the minority class [3]. In most use-cases, the main interest lies in
the positive class which occurs with reduced frequency [3]. However, our focus
revolves around the negative samples that make up our minority class, which
will later be discussed in more detail. There exist many different methods to
compensate for this bias. In this research we use straightforward methods such
as adding class-weights and under sampling of the majority class data.

Lastly, we visually inspected our data after all data preparation steps by
making montages for all classes we have worked on (see Figure 3 for the forest
dataset). Montages are not necessary for the training of the network, or for any
further predictions made by the model. However, they are useful for us to see
what data is fed to the network and to get a clear impression of whether this
learning task is feasible for each class. We can visually see that polygons that
changed tend to have fewer green pixels, this is a pattern that a CNN potentially
may detect.

3.2 Algorithm

Once we have our training data, we can start training the network. As previously
mentioned, we use a SCNN architecture. We apply transfer learning by using pre
trained models, such as ResNet and Inception, as underlying CNNs. The CNN
processes both images before combining their results by computing the euclidean
distance between the two feature maps. These values are finally processed by an
output layer with a sigmoid activation function to ensure that the final results
are contained between 0 and 1. The lower the output, the more likely it is that
a change in land use has occurred. This occurs as it is common to implement
Siamese networks with a contrastive loss function which is formulated as:

Y ∗D2 + (1− Y ) ∗max(m−D, 0)2 (1)

where Y is the label (i.e. 0 or 1), D is the Euclidian distance between the sister
networks, and m is the margin. It calculates the distance between an output
of the network and an example from the same class, then contrasts it with the
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Fig. 3. An illustration of the training data for the forest class. We see four by five
image pairs. The left image in the pair is the aerial image of 2015, whereas the right is
the same polygon in 2017. The label ’unchanged’ means that the polygon was classified
as ’forest’ in both years.

distance to an example from the opposite class. In other words, the loss is low
if positive examples are similarly represented whereas negative examples are
further in distance. It’s goal is to evaluate how well the network can distinguish
between the image pairs.

In the next Section we will discuss our results with SCNNs on the three
selected land use classes, using the above described learning task, data and
network architecture.

4 Experimental study

We did preliminary experiments with inception and restnet. Inception outper-
formed restnet consistently for our learning task for all selected land use classes.
Therefore, in the remainder of this paper for further experiments we report only
on the inception model. We first discuss our experiments for finding the optimal
algorithm configuration wherein we train models with various different training
datasets and hyper-parameter settings. Next, we train the optimally configured
network for a longer period and test it on independent, unbalanced test set.

4.1 Finding the optimal algorithm configuration

The goal of these experiments is to find the best configuration for the SCNN.
With respect to our training data, as a first step we balance the dataset us-
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Model F1/Accuracy Precision Recall

Balanced dataset

inception-16-binary crossentropy-0.0001 0.69 0.70 0.61
inception-16-binary crossentropy-0.001 0.53 0.66 0.10
inception-16-binary crossentropy-1e-05 0.62 0.61 0.58
inception-16-contrastive loss-0.0001 0.68 0.67 0.72
inception-16-contrastive loss-0.001 0.52 0.74 0.02
inception-16-contrastive loss-1e-05 0.62 0.61 0.59

inception-32-binary crossentropy-0.0001 0.69 0.66 0.70
inception-32-binary crossentropy-0.001 0.54 0.53 0.26
inception-32-binary crossentropy-1e-05 0.62 0.59 0.64
inception-32-contrastive loss-0.0001 0.67 0.67 0.60
inception-32-contrastive loss-0.001 0.58 0.57 0.49
inception-32-contrastive loss-1e-05 0.61 0.58 0.61

Balanced and filtered dataset

inception-16-binary crossentropy-0.0001 0.67 0.65 0.84
inception-16-binary crossentropy-0.001 0.53 0.54 0.86
inception-16-binary crossentropy-1e-05 0.57 0.59 0.61
inception-16-contrastive loss-0.0001 0.7 0.75 0.64

inception-16-contrastive loss-0.001 0.54 0.54 1
inception-16-contrastive loss-1e-05 0.54 0.58 0.51

inception-32-binary crossentropy-0.0001 0.67 0.7 0.65
inception-32-binary crossentropy-0.001 0.59 0.64 0.55
inception-32-binary crossentropy-1e-05 0.54 0.58 0.5
inception-32-contrastive loss-0.0001 0.67 0.7 0.65
inception-32-contrastive loss-0.001 0.58 0.61 0.58
inception-32-contrastive loss-1e-05 0.55 0.59 0.54

Table 1. Experimental results on data of building sites.The name of the model is based
on hyper parameter settings, first the batch size, then the loss function and finally the
learning rate.

ing under-sampling of the majority class. The balanced data contains an equal
amount of changed and unchanged examples. We chose to balance the data due
to the time complexity of training on the unbalanced data. Next, we can decide
to either use the entire dataset, or we can filter out polygons that are too small.
We have decided to work with a threshold of 10%, meaning that at least 10%
of the total number of pixels in the image must be unmasked. Arguably, images
with hardly any unmasked pixels do not really contribute to the learning process,
but slows down convergence of the model.

Furthermore, we do a grid search for several hyper-parameters. For the batch
size we compare performances for both 16 and 32. For learning rates we consid-
ered 0.001, 0.0001, and 0.00001. The last hyper-parameter is the loss function.
We compare the previously described contrastive loss function with the more
standard binary cross entropy loss function. In total we therefore ran (2 x 3 x 2)
twelve different settings for the hyper-parameters on the two different training
datasets (i.e. filtered or unfiltered). Training epochs were constrained (20) and
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Model F1/Accuracy Precision Recall

Balanced dataset

inception-16-binary crossentropy-0.0001 0.86 0.88 0.84
inception-16-binary crossentropy-0.001 0.62 0.65 0.52
inception-16-binary crossentropy-1e-05 0.83 0.83 0.84
inception-16-contrastive loss-0.0001 0.86 0.89 0.81
inception-16-contrastive loss-0.001 0.72 0.90 0.50
inception-16-contrastive loss-1e-05 0.84 0.86 0.81

inception-32-binary crossentropy-0.0001 0.87 0.87 0.86
inception-32-binary crossentropy-0.001 0.83 0.85 0.81
inception-32-binary crossentropy-1e-05 0.81 0.80 0.82
inception-32-contrastive loss-0.0001 0.86 0.87 0.84
inception-32-contrastive loss-0.001 0.78 0.88 0.65
inception-32-contrastive loss-1e-05 0.83 0.83 0.81

Balanced and filtered dataset

inception-16-binary crossentropy-0.0001 0.90 0.93 0.87
inception-16-binary crossentropy-0.001 0.80 0.77 0.87
inception-16-binary crossentropy-1e-05 0.77 0.78 0.78
inception-16-contrastive loss-0.0001 0.86 0.82 0.95
inception-16-contrastive loss-0.001 0.52 0.52 1.00
inception-16-contrastive loss-1e-05 0.72 0.74 0.71

inception-32-binary crossentropy-0.0001 0.90 0.93 0.87
inception-32-binary crossentropy-0.001 0.77 0.96 0.59
inception-32-binary crossentropy-1e-05 0.76 0.79 0.75
inception-32-contrastive loss-0.0001 0.91 0.92 0.91

inception-32-contrastive loss-0.001 0.42 0.47 0.76
inception-32-contrastive loss-1e-05 0.68 0.67 0.74
Table 2. Experimental results on agricultural usage sites dataset.

training was stopped if no considerable progress was made (via early stopping).
Again, the goal was to quickly find an optimal algorithm configuration.

See all results on standard test set (twenty percent of whole dataset) for
the ”building site” model in Table 1. The best performance is decent with an
accuracy of 70%. The best accuracy’s for ”other agricultural usage” and ”forests”
classes are considerably higher (see Table 2 and 3), respectively 91% and 88%
of instances in test set are correctly classified.

Generally, we find that filtering the dataset seems to improve model perfor-
mance. Also, the common denominators for the best algorithm configurations are
contrastive loss and a learning rate of 0.0001. We choose these hyper-parameter
settings, along with a batch size of 32, for the next batch of experiments.

4.2 Evaluating the best algorithm classification

The goal of these experiments is to evaluate the effectiveness of a longer trained
model (using ’optimal’ hyper-parameters). To recap, the experiments in the pre-
vious subsection were on balanced data. We now test on unbalanced data, be-
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Model F1/Accuracy Precision Recall

Balanced dataset

inception-16-binary crossentropy-0.0001 0.82 0.77 0.91
inception-16-binary crossentropy-0.001 0.63 0.98 0.25
inception-16-binary crossentropy-1e-05 0.76 0.72 0.83
inception-16-contrastive loss-0.0001 0.82 0.90 0.72
inception-16-contrastive loss-0.001 0.64 0.96 0.27
inception-16-contrastive loss-1e-05 0.75 0.72 0.80

inception-32-binary crossentropy-0.0001 0.83 0.86 0.77
inception-32-binary crossentropy-0.001 0.76 0.93 0.54
inception-32-binary crossentropy-1e-05 0.72 0.68 0.81
inception-32-contrastive loss-0.0001 0.86 0.84 0.88
inception-32-contrastive loss-0.001 0.56 0.74 0.15
inception-32-contrastive loss-1e-05 0.72 0.69 0.78

Balanced and filtered dataset

inception-16-binary crossentropy-0.0001 0.83 0.89 0.79
inception-16-binary crossentropy-0.001 0.71 0.66 0.97
inception-16-binary crossentropy-1e-05 0.63 0.65 0.7
inception-16-contrastive loss-0.0001 0.85 0.91 0.82
inception-16-contrastive loss-0.001 0.54 0.54 1
inception-16-contrastive loss-1e-05 0.64 0.69 0.62

inception-32-binary crossentropy-0.0001 0.84 0.84 0.87
inception-32-binary crossentropy-0.001 0.84 0.98 0.72
inception-32-binary crossentropy-1e-05 0.65 0.67 0.69
inception-32-contrastive loss-0.0001 0.88 0.9 0.87

inception-32-contrastive loss-0.001 0.4 0.38 0.17
inception-32-contrastive loss-1e-05 0.66 0.67 0.73

Table 3. Experimental results on forest dataset.

cause this matches our intended use-case, i.e., detecting changes of land-use for
new years (such as 2020). Obviously, this new data is then unbalanced. We filter
this dataset, as was described for previous experiments, because this increases
model performance (see Tables 1, 2, 3). We then create a training set by picking
out 80% of the unbalanced dataset and equally splitting the remaining data in a
validation and a test set. Only the training set is then balanced, as this is impor-
tant to prevent a biased model. However, both the validation and test sets remain
unbalanced as this simulates the input once we start working on new data. We
took the best hyper-parameter configuration found in the previous section and
after training evaluated the model on the unbalanced test data. The results for
selected classes are shown in Figure 4. The accuracy can be computed by adding
the correct classifications divided by all instances in the test set. The accuracy
for ”building sites”, ”other agricultural usage” and ”forests” classes respectively
are 71% (655 instances), 91% (30791 instances) and 91% (4760 instances). These
accuracy’s reflect those in previous experiments.

The pitch for this research was potential efficiency gain for creators of BBG
at SN which arguably can be best measured with the recall of the changed class.
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Fig. 4. Confusion matrix of optimal models tested on unbalanced test set respectively
from left to right on ”building sites”, ”other agricultural usages” and ”forest”. The
real label is displayed on the x-axis, whereas the y-axis shows the predicted label. For
the ’changed’ class, the ratio of values horizontally reflects the precision, the ratio of
values vertically reflects the recall.

We find that the recall, which can be computed by dividing the number of true
positives by the total amount of positive samples, of the changed class is high
for all classes, notably 68% for building sites, 90% for other agricultural usage
and 88% for forests. In other words, the model detects the vast majority of the
changes. For SN’ use-case, this is an important metric. However, the current
model often falsely predicts changes, i.e., the precision of the changed class is
low, respectively 60%, 8% and 10%. Even though precision is low, the model still
correctly filters out the vast majority of unchanged items (e.g., the precision of
unchanged class is high) which enables people at SN to focus and reduce their
workload.

5 Conclusions and future work

In this paper we applied a Siamese Convolutional Neural Network (SCNN) to
the task of change detection of land use. The input data are aerial imaginary of
the Netherlands and the so-called Bestand Bodemgebruik (BBG), a file assigning
one out of 38 different land-use classes to areas in the Netherlands. Statistics
Netherlands creates the BBG, a this takes considerable time. The use of SCNNs
should accelerate the workflow for the creators, by pointing them to areas in the
Netherlands that are likely yo have changed.

Experiments show that filtering images with hardly any unmasked pixels
boosts performance. Smaller instances are disregarded as we consider them to
contain too little information to be significant for the training process. Models
were tuned with a grid search on several relevant hyper-parameters and then
applied to the full data. The trained models seem to perform well on all three
classes and most importantly, the amount of false positives is low. This means
that the algorithm barely miss classifies any changed instances, therefore the



Change Detection of Land Use: A Deep Learning Case-Study 11

annotators are guided towards most changes. Also, notable efficiency gains can
be expected as the model filters out the vast majority of instances that remain
unchanged (and as such are not interesting for the creators of the BBG to in-
spect).

The results are promising so far, and it seems very feasible to at least semi-
automate the production of the BBG using these networks. In order to confirm
this, the next step is to transform the obtained predictions from the model into a
format that can easily be interpreted by the creators of the BBG, such that they
can implement these models in practise. As further future work we can continue
rerunning our experiments on unbalanced datasets (using class-weights) to see
whether we can improve our results even further. Additionally, we can extend our
current work to more land use classes as well as look into the possibilities with
direct classification. Finally, we can experiment with the input data by trying
to implement data augmentation and data fusion by adding auxiliary data, such
as SNs registry data, into the network to improve our results.
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