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Abstract. Federated learning is a powerful training strategy for neural
networks where several independent clients train a model without the
need of sharing potentially sensitive data. However, real world client-
local data is usually biased: A single client might have access to only a
few lighting conditions in computer visions, patient groups in a hospital
or speakers in a smart device performing keyword spotting. We help
researchers to better understand and estimate the expected performance
impacts by introducing a new method to partition a given dataset into
an arbitrary amount of clients, each with unique properties, to simulate
such conditions.
We apply the largest differencing method to partition the Google Speech
Command dataset into clients with non-overlapping speakers and addi-
tionally unique keywords and share the script to create the novel GSC-FL
dataset. The results, using convolutional neural networks, show that the
performance of the final model is stable up to at least 16 clients and
models trained only on local data are clearly outperformed by federated
learning. However, unique speakers for each client have a negative per-
formance impact and it increases even more with unique keywords. Our
script can be applied with only minor adjustments to partition any other
dataset for federated learning investigations as well.

Keywords: keyword spotting · federated learning · multiway number
partitioning.

1 Introduction

Keyword spotting (KWS) deals with recognizing keywords such as “yes" or “stop"
in a speech audio stream. A special case is the recognition of a selected word to
wake-up voice assistant systems like Amazon Alexa or Microsoft Cortana (wake-
word detection) before a computationally expensive automatic speech recogni-
tion is triggered to analyze the semantic meanings of longer phrases. Such wake
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word or hot word detection systems can be extended by looking for several key-
words which allow the hands-free control of industrial machines or the indexing of
large audio archives. KWS has seen strong performance improvements with the
inclusion of deep learning techniques [2, 15, 12, 11], see [10] for a recent review.

These deep learning approaches require large databases to learn robust mod-
els which are not overfitting to certain speakers or recording conditions. A simple
but expensive way to improve their robustness is to collect and annotate more
and more data from a vast user basis which covers different speakers and all key-
words. These models can then be adapted to new keywords with few examples
using transfer learning [11]. However, the centralized data collection raises several
privacy, security, and logistical issues: By sharing speech data (best case with re-
alistic background noise) also other confidential information may be shared, the
centralized host needs to be fully trusted, and raw audio data (or at least a com-
pressed input representation) needs to be transmitted. An alternative solution
for obtaining robust models is Federated Learning (FL) [1]. Instead of training
the model on a centralized data collection, models are trained directly on many
edge devices using locally stored data. Each of these devices, so-called clients,
share the parameter changes with a coordination server, which aggregates these
changes to update the global model. This newer model is then transferred back
to the clients and used for the next training iteration. This process is repeated
until convergence or when new data is acquired [6].

The performance of federated learning systems degrades, if the data is not
ideally distributed over all clients and unbalanced in terms of locally available
classes. The problem of sound event detection makes no exception [5], the same
goes for the KWS use case: Not all clients have the same speakers which might
lead to a local speaker overfitting. Conversely, not all clients have examples for
all keywords since users likely only record keywords of their interest. To the best
of our knowledge, the application of FL to KWS has focused on wake-up word
detection on small [9] and big [4] datasets but not considered larger keyword
vocabulary nor the mentioned distribution problems.

With this paper, we propose the novel GSC-FL dataset which covers differ-
ent realistic data distributions and publish the scripts to create it.3 It contains
pre-defined splits of the Google-Speech Commands (GSC) dataset [13] for fully
random, unique speakers, and also unique keywords distributions for each client.
These splits were created with the largest differencing method (LDM), see Sec-
tion 2; an approach that can also be applied to other FL distribution scenarios
that are unrelated to KWS, such as medical image analysis with unique patients
or other sociodemographic characteristics that might bias the local models. With
the GSC-FL dataset we answer the following research questions and provide
deeper insights on FL for KWS: How is the performance of models trained with
FL affected when more clients participate that have less data per client? How
do unique speakers for each client affect the performance? And lastly: How do
unique keywords for each client affect the performance?

3 The scripts can be found here: https://github.com/paul-cw/gsc-fl.git
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2 Realistic Data Distribution

To investigate the research questions, we need an appropriate FL dataset where
each sample from the original dataset is assigned to a specific client. The simplest
approach for GSC is to randomly select utterances of each keyword independent
of the speaker from the whole set. However, for a realistic scenario, it is very
unlikely that each speaker records keywords at basically every client which are
normally geographically dispersed. A random distribution implicitly assumes this
and following experiments might output too optimistic results. We require a more
realistic data distribution that reflects particular constraints: Non-overlapping
speakers between the resulting clients and the same number of recordings per
client. While the former restricts the local variability in terms of speakers, we
choose the latter to eliminate effects due to different number of total utterances
per client. This problems arises since each speaker contributes a varying amount
of keywords to the whole dataset, starting from a single word.

We can formulate the distribution problem as follows: Suppose we have N
speakers in the original dataset and write down a set of integers S = {i1, ..., iN}
where in is the number of recordings that speaker n contributed to the GSC
dataset. We want to split the dataset into K clients, which is then equivalent to
finding K subsets of S, where the sum of elements in each subset is approximately
equal. This problem is known as multiway number partitioning. While in the
case of a small number of speakers one could evaluate all possible combinations
directly and choose the best one, the vast amount of possible combinations makes
this approach unfeasible. We propose the largest differencing method (LDM) [7]
to search for an optimal solution by minimizing the difference between the subset
with the largest and the one with the smallest sum. LDM consecutively replaces
the two biggest numbers in S with their difference to achieve this. The resulting
partitions are shown in Table 3 and discussed in the next section. To the best
of our knowledge, LDM has not been considered for distributing FL datasets.

3 The GSC-FL Dataset

We start from the well known Google Speech Commands dataset, which contains
105,829 utterances of 35 keywords from 2,618 different speakers [13]. To prepare
it for federated learning, we apply the following processing pipeline:

First, we select keywords: To get a balanced dataset, we select the 10
commands yes, no, on, down, stop, right, up, go, left, off and put the remaining
keywords into the unknown category. For each speaker, we draw random un-
known recordings until the total number of unknown keywords is equal to the
speakers average number of recordings of the 10 keywords above. We create si-
lence utterances, mix in background noise and add the same amount of unknown
utterances to each speaker. The resulting dataset has 12 classes: 10 keywords,
unknown, and silence.
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Second, we create clients for federated learning: We assign each utter-
ance in the training dataset4 a client id for the splits into K=[2 ... 512] clients.
This is done in two ways: For the iid split, we split the utterances randomly
into K equal sized clients with a locally balanced amount of keywords. For the
speaker split, we create K clients with the condition that all utterances of a
given speaker go to one client only, while optimizing for identical number of
recordings on each client using LDM, see Section 2. While the first split provides
an optimal baseline with overlapping speakers on the different clients, the sec-
ond split ensures that all utterances of a given speaker are mapped to only one
client. The results in Table 3 show the roughly balanced splits with respect to
the number of utterances and speakers over the resulting clients.

Third, we create unique keywords: We drop the utterances of the key-
words up, go, left, off from all but one client (or two in the case of K=8). This
corresponds to the most difficult scenario where each client has unique speakers
and also partially unique keywords. The dropped utterance are also removed
from the centralized dataset for a fair comparison.

The resulting datasets are shown for K=8 in Figure 1. One can see that the
split is slightly more imbalanced intra-class wise for the speaker splitting but
still shows a balanced data distributions. The slight increase in class imbalance
is due to the non trivial task of creating K clients from the dataset. We measure
the class imbalance on a client c as the deviation from the mean number of
utterances per keyword:

αc = 100 ∗
∑K

k=1 |Nck −Nc|
2Nc(K − 1)

(1)

Nc =

∑K
k=1 Nck

K
(2)

Where K is the number of classes on the client, Nck the number of utterances
of class k on client c and Nc is the average number of utterances per keyword
on client c. We have normalized the measure to αc ∈ [0, 100], where equally
distributed keywords result in αc = 0 and unequally distributed keywords in
αc = 100. The non iid-ness is then defined as:

α =
1

K

K∑
c=1

αc (3)

where K is the number of clients and αc defined above.

4 Experimental Setup

This section describes the input representation obtained from the raw audio
data as well as the neural network architecture that is used in the following
experiments.
4 We use the predefined train, validation, test split that come with the dataset.
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Fig. 1. Utterance distribution by keyword and client id. Color encodes the number of
recordings for each combination with the different splitting methods described.
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Table 1. Average dataset properties and the corresponding standard deviation after
splitting into several clients in the unique speakers setup. Average speakers/utterances
(utt.) are obtained by averaging the number of speakers / utterances over all clients.
The non-iidness (α) is defined in equation (3). The value for the iid split is α=1.1 for
all splits.

#clients (K) speakers utt. / kw αspeaker αiid

2 1004.0 ± 4.2 1535.5 ± 0.1 1.1 ± 0.6 1.1 ±0.0
4 502.0 ± 1.4 767.7 ± 0.0 1.4 ± 0.3 1.1 ±0.0
8 251.0 ± 1.2 383.9 ± 0.0 1.7 ± 0.3 1.1 ±0.0

16 125.5 ± 1.1 191.9 ± 0.0 2.2 ± 0.4 1.1 ±0.0
32 62.8 ± 0.8 96.0 ± 0.0 2.9 ± 0.7 1.1 ±0.0
64 31.4 ± 0.7 48.0 ± 0.0 3.8 ± 1.0 1.1 ±0.1

128 15.7±0.5 24.0 ±0.0 5.8 ±1.5 1.2 ±0.3
256 7.8 ±1.4 12.0 ±0.0 7.5 ±2.1 1.4 ±0.6
512 3.9 ±1.5 6.0 ±0.5 9.9 ±4.0 1.5 ±1.6

4.1 Input representation

The dataset contains one second long raw audio recordings with a sampling rate
of 16 kHz. We extract 40 MFCC with a sliding window of l = 40ms and a
stride of s = 20ms as in [15], resulting in a 49 x 40 dimensional input matrix
for each input file. To create realistic silence utterances, we add the Google
Speech Command specific background noise with a fixed amplitude to the silent
utterances.

4.2 Model

For fast algorithmic iterations and the feasible execution, all experiments focus
on small footprint models with less than 100k parameters. It must be noted,
that the general accuracy might be increased with larger models with millions
of parameters as in [11], but this is not the focus of this paper. Furthermore,
these small models are more suitable for FL scenarios, where each client needs
to train models locally and has likely only restricted hardware resources.

There are a variety of different small footprint models that have been tested
on the Google Speech Command dataset, mostly recurrent neural network (RNN)
and convolutional neural network (CNN) architectures, see [12, 15] for compara-
tive studies of different architectures. For our purposes we use the small footprint
model with temporal convolutions introduced in [3], which has only 65k param-
eters while achieving near state-of-the-art performance. We choose the authors’
TC-ResNet8 architecture. The residual blocks contain batch normalization lay-
ers in the original formulation, which we replace with group normalization layers
[14]. These were shown to be more suitable for FL [5].
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4.3 Objective and training procedure

Since it is a multi-class single-label problem, we use the Categorical Cross En-
tropy loss to optimize the model. For the final evaluation, we pick the best train-
ing weights in terms of F-score (f1) on the fixed validation dataset. All results
are reported for the pre-defined test set which is independent of the FL training
data distribution. For a meaningful comparison, we hold as many parameters
fixed as possible. That includes a batch size of 32 as well as the (client side)
Adam optimizer [8]. We compare different learning rates and find the common
0.001 works best on average. We fix the dropout rate by running experiments
with K = 2 and K = 32 clients. The former benefits from bigger dropout rates,
while the latter achieves best results with no dropout. Dropout is therefore set
to a rate of 0.1 as a compromise. The results could be further improved with
data augmentation, hyper parameter optimization, and learning rate schedulers.

Non-FL training To understand the benefit each client can obtain from par-
ticipating in the FL process, we calculate individual models on all clients in a
non-federated manner. We quote the F -score on the test set of the best model
from all clients in the split as the result from non-federated learning. We train
for 250 epochs and use early stopping with a patience of 10 epochs. The larger
the number of clients, the less data is available for individual models and we
expect more gain by participating in the FL process.

FL training For federated learning we use the standard federated averaging
algorithm [1] with a learning rate of 1. We run the code three times to account
for randomness during training. Throughout the experiments, we train for 250
epochs (600 for the unique keyword settings due to slower convergence) and
quote the F -score on the test set. We run one epoch per client for each federated
averaging round. In such a round, all clients participate in the training process.

5 Results

The following section presents the results for federated compared to non-federated
training and details the outcomes for the unique speakers and keyword scenarios.

5.1 FL vs. Non-FL Training

The final results for FL on the iid split are shown in Table 2. We see that FL
has a positive impact compared to the local training on each client and that
the difference to the non-federated F-score is positive in every case. This is
expected, since the federated setup makes use of the full dataset, not only the
Kth fraction as the baseline runs do. The performance of the final model is stable
up to 16 clients and decreases by 4 percentage points with 64 clients. This can
be attributed to the smaller amount of local data.
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5.2 Unique speakers

Comparing iid and speaker splits in Table 2, one can see that the federated
performance in the speaker split is roughly equal to the iid baseline for up to
16 clients and only moderately diverges up to 128 clients with 16 speakers each.
With less than 10 speakers per client as in 256 and 512, the gap is increasing.
One reason might be the models overfitting to local speakers since the amount of
speakers is reduced with an increased number of clients. Another reason could be
due to the increasing class imbalance on each client, which is shown in Table 3.
This is due to the constraint of equal number of recordings and unique speakers
on each client, which is harder to fulfill the more clients are used. In general,
speaker overfitting might be a challenge for real world applications where one
client equals one household with less than five speakers usually.

Table 2. Mean F -scores and standard deviation on the test set for iid (Fiid) and
speaker (Fspeaker) splits, as well as the best result for models trained locally (Flocal)
on each client without federated learning on the iid split. The best result for a fixed
number of clients is bold.

#clients (K) Fiid [%] Fspeaker [%] Flocal [%]

1 94.6 94.5 94.6
2 94.6 ± 0.3 94.7 ± 0.2 91.9
4 94.6 ± 0.3 94.8 ± 0.6 90.1
8 94.5 ± 0.2 94.6 ± 0.3 87.4
16 94.5 ± 0.1 94.1 ± 0.2 83.6
32 92.9 ± 0.3 92.5 ± 0.1 79.2
64 91.0 ± 0.3 90.1 ± 0.3 75.2
128 87,7 ± 0.2 87.0 ± 0.8 65.3
256 84,1 ± 0.2 80.9 ± 1.0 55.7
512 77,7 ± 1.6 74.8 ± 1.9 42.9

5.3 Unique keywords

Table 3. The F-scores (F) with federated learning (FL) for the splits into 4 and 8
clients with unique keywords (kws) are shown in comparison to the centralized F-scores
(centr.) that are obtained using the full dataset with adjusted keyword utterances.

speaker split centr. 4 FL 4 centr. 8 FL 8

F all kws [%] 93.1 84.5 92.6 86.8
F shared kws [%] 93.6 88.6 93.4 90.2
F unique kws [%] 92.1 76.2 91.2 80.0
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The results for the unique vocabulary setting are shown in Table 3. The
centralized F-scores are higher than the results achieved in the federated setup.
The total amount of utterances for each keyword can be ruled out as a reason
since the total utterances were also adjusted in the centralized training. This
explains also the lower performance compared to Table 2. The results indicate
that the missbalanced client data has a negative impact on the performance
of the FL model. For 8 clients the accuracy improves since two clients have
examples of each unique keyword leading to a higher training impact of the
unique keywords in the averaging step of FL. As expected, the F-score is lower
for the unique keywords than the shared ones that are present at each client.
They also converge slower, as can be inferred from the learning curves in Figure 2.
The shared vocabulary is converging after 50 epochs, while the unique keywords
are reaching an F-score of 0.5. Even after the 600 epochs, federated models don’t
show full convergence for the unique keywords. The FL averaging process might
need to be adjusted when classes are unique for some clients to address this, in
future work.

Fig. 2. The F -score on the validation set is shown for the unique keyword setting for
the speaker split.

6 Conclusion

Federated Learning is a promising approach in keyword spotting use cases, where
a central collection of training data is not feasible or has undesired consequences,
such as possible privacy violations in case of a data breach. To facilitate research
on this topic, we publish the GSC-FL dataset, a partitioned version of the Google
Speech Command dataset into unique speakers and unique keyword splits. We
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interpret the creation of such a dataset as a multiway number partitioning prob-
lem and create our dataset with the help of the largest differencing method. We
suggest that this approach can be used for similar federated learning studies,
where a centrally collected dataset, that contains multiple instances from the
same source or any other property of interest, needs to be distributed efficiently
without overlapping instances to a variable number of FL clients.

In our experiments on GSC-FL, we showed that the model benefits from the
federated learning compared to local training, as expected. In the iid split, where
speakers are present on several clients, the performance decreases with more than
16 clients and drops considerably with 512. This is caused by fewer training ex-
amples per client. Unique speakers do not influence the results negatively when
more than 10 speakers contribute to each client. With only a handful of speak-
ers, the performance degrades due to speaker overfitting and an increased class
imbalance caused by the unique speaker setting. Additionally, unique keywords
and therefore unique classes for each client affect the performance negatively
which leaves room for improvements.

The proposed dataset and our results highlight directions for future research
on federated learning in the context of KWS, such as testing different aggregation
schemes, the protection against model inversion attacks, and methods to address
local bias that occure with realisitically partioned datasets..
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